Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 414(10): 3243-3255, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34936009

RESUMEN

The present paper describes a compact point of care (POC) optical device for therapeutic drug monitoring (TDM). The core of the device is a disposable plastic chip where an immunoassay for the determination of immunosuppressants takes place. The chip is designed in order to have ten parallel microchannels allowing the simultaneous detection of more than one analyte with replicate measurements. The device is equipped with a microfluidic system, which provides sample mixing with the necessary chemicals and pumping samples, reagents and buffers into the measurement chip, and with integrated thin film amorphous silicon photodiodes for the fluorescence detection. Submicrometric fluorescent magnetic particles are used as support in the immunoassay in order to improve the efficiency of the assay. In particular, the magnetic feature is used to concentrate the antibody onto the sensing layer leading to a much faster implementation of the assay, while the fluorescent feature is used to increase the optical signal leading to a larger optical dynamic change and consequently a better sensitivity and a lower limit of detection. The design and development of the whole integrated optical device are here illustrated. In addition, detection of mycophenolic acid and cyclosporine A in spiked solutions and in microdialysate samples from patient blood with the implemented device are reported.


Asunto(s)
Inmunosupresores , Dispositivos Ópticos , Humanos , Inmunoensayo , Microfluídica , Silicio
2.
J Chem Inf Model ; 56(5): 862-76, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27105206

RESUMEN

Adamantane derivatives, such as amantadine and rimantadine, have been reported to block the transmembrane domain (TM) of the M2 protein of influenza A virus (A/M2) but their clinical use has been discontinued due to evolved resistance in humans. Although experiments and simulations have provided adequate information about the binding interaction of amantadine or rimantadine to the M2 protein, methods for predicting binding affinities of whole series of M2 inhibitors have so far been scarcely applied. Such methods could assist in the development of novel potent inhibitors that overcome A/M2 resistance. Here we show that alchemical free energy calculations of ligand binding using the Bennett acceptance ratio (BAR) method are valuable for determining the relative binding potency of A/M2 inhibitors of the aminoadamantane type covering a binding affinity range of only ∼2 kcal mol(-1). Their binding affinities measured by isothermal titration calorimetry (ITC) against the A/M2TM tetramer from the Udorn strain in its closed form at pH 8 were used as experimental probes. The binding constants of rimantadine enantiomers against M2TMUdorn were measured for the first time and found to be equal. Two series of alchemical free energy calculations were performed using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids to mimic the membrane environment. A fair correlation was found for DPPC that was significantly improved using DMPC, which resembles more closely the DPC lipids used in the ITC experiments. This demonstrates that binding free energy calculations by the BAR approach can be used to predict relative binding affinities of aminoadamantane derivatives toward M2TM with good accuracy.


Asunto(s)
Adamantano/química , Adamantano/metabolismo , Membrana Celular/metabolismo , Temperatura , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Secuencia de Aminoácidos , Calorimetría , Entropía , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Protones , Estereoisomerismo
3.
Anal Bioanal Chem ; 407(27): 8225-31, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26345439

RESUMEN

Localized surface plasmon resonances of metallic nanoparticles can be used for biosensing because of their sensitive dependence on the refractive index of the surrounding medium. The binding of molecules to the particles causes a change of the effective refractive index in their close vicinity, which leads to a reversible shift of the resonance. We present simulations and sensing experiments of a plasmon resonance based biosensor that makes use of the narrow antisymmetric resonance in coupled plasmonic vertical dimers. The sensitivity of the antisymmetric resonance is compared with that of a surface lattice resonance for refractive index sensing of bulk and of thin layers of molecules. The functionality of such a sensor surface is demonstrated via a testosterone immunoassay for detection of antibody from a solution by binding to surface-immobilized antigen in a fluidic channel.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Dióxido de Silicio/química , Resonancia por Plasmón de Superficie/instrumentación , Testosterona/análisis , Dimerización , Humanos , Inmunoensayo/instrumentación , Dispositivos Laboratorio en un Chip , Refractometría
4.
Anal Bioanal Chem ; 406(17): 4033-51, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24817356

RESUMEN

This review is focused on methods for detecting small molecules and, in particular, the characterisation of their interaction with natural proteins (e.g. receptors, ion channels). Because there are intrinsic advantages to using label-free methods over labelled methods (e.g. fluorescence, radioactivity), this review only covers label-free techniques. We briefly discuss available techniques and their advantages and disadvantages, especially as related to investigating the interaction between small molecules and proteins. The reviewed techniques include well-known and widely used standard analytical methods (e.g. HPLC-MS, NMR, calorimetry, and X-ray diffraction), newer and more specialised analytical methods (e.g. biosensors), biological systems (e.g. cell lines and animal models), and in-silico approaches.


Asunto(s)
Proteínas/química , Animales , Técnicas Biosensibles , Cromatografía Liquida , Humanos , Ligandos , Espectrometría de Masas , Unión Proteica , Difracción de Rayos X
5.
Biochim Biophys Acta Biomembr ; 1866(2): 184258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37995846

RESUMEN

Experimental binding free energies of 27 adamantyl amines against the influenza M2(22-46) WT tetramer, in its closed form at pH 8, were measured by ITC in DPC micelles. The measured Kd's range is ~44 while the antiviral potencies (IC50) range is ~750 with a good correlation between binding free energies computed with Kd and IC50 values (r = 0.76). We explored with MD simulations (ff19sb, CHARMM36m) the binding profile of complexes with strong, moderate and weak binders embedded in DMPC, DPPC, POPC or a viral mimetic membrane and using different experimental starting structures of M2. To predict accurately differences in binding free energy in response to subtle changes in the structure of the ligands, we performed 18 alchemical perturbative single topology FEP/MD NPT simulations (OPLS2005) using the BAR estimator (Desmond software) and 20 dual topology calculations TI/MD NVT simulations (ff19sb) using the MBAR estimator (Amber software) for adamantyl amines in complex with M2(22-46) WT in DMPC, DPPC, POPC. We observed that both methods with all lipids show a very good correlation between the experimental and calculated relative binding free energies (r = 0.77-0.87, mue = 0.36-0.92 kcal mol-1) with the highest performance achieved with TI/MBAR and lowest performance with FEP/BAR in DMPC bilayers. When antiviral potencies are used instead of the Kd values for computing the experimental binding free energies we obtained also good performance with both FEP/BAR (r = 0.83, mue = 0.75 kcal mol-1) and TI/MBAR (r = 0.69, mue = 0.77 kcal mol-1).


Asunto(s)
Gripe Humana , Membrana Dobles de Lípidos , Humanos , Membrana Dobles de Lípidos/química , Gripe Humana/metabolismo , Simulación de Dinámica Molecular , Aminas , Dimiristoilfosfatidilcolina/química , Antivirales/farmacología
8.
ACS Med Chem Lett ; 9(3): 198-203, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29541360

RESUMEN

Recently, the binding kinetics of a ligand-target interaction, such as the residence time of a small molecule on its protein target, are seen as increasingly important for drug efficacy. Here, we investigate these concepts to explain binding and proton blockage of rimantadine variants bearing progressively larger alkyl groups to influenza A virus M2 wild type (WT) and M2 S31N protein proton channel. We showed that resistance of M2 S31N to rimantadine analogues compared to M2 WT resulted from their higher koff rates compared to the kon rates according to electrophysiology (EP) measurements. This is due to the fact that, in M2 S31N, the loss of the V27 pocket for the adamantyl cage resulted in low residence time inside the M2 pore. Both rimantadine enantiomers have similar channel blockage and binding kon and koff against M2 WT. To compare the potency between the rimantadine variants against M2, we applied approaches using different mimicry of M2, i.e., isothermal titration calorimetry and molecular dynamics simulation, EP, and antiviral assays. It was also shown that a small change in an amino acid at site 28 of M2 WT, which does not line the pore, seriously affects M2 WT blockage kinetics.

9.
ACS Med Chem Lett ; 8(2): 145-150, 2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28217261

RESUMEN

Recent findings from solid state NMR (ssNMR) studies suggested that the (R)-enantiomer of rimantadine binds to the full M2 protein with higher affinity than the (S)-enantiomer. Intrigued by these findings, we applied functional assays, such as antiviral assay and electrophysiology (EP), to evaluate the binding affinity of rimantadine enantiomers to the M2 protein channel. Unexpectedly, no significant difference was found between the two enantiomers. Our experimental data based on the full M2 protein function were further supported by alchemical free energy calculations and isothermal titration calorimetry (ITC) allowing an evaluation of the binding affinity of rimantadine enantiomers to the M2TM pore. Both enantiomers have similar channel blockage, affinity, and antiviral potency.

10.
J Med Chem ; 60(5): 1716-1733, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28107633

RESUMEN

While aminoadamantanes are well-established inhibitors of the influenza A M2 proton channel, the mechanisms by which they are rendered ineffective against M2S31N are unclear. Solid state NMR, isothermal titration calorimetry, electrophysiology, antiviral assays, and molecular dynamics simulations suggest stronger binding interactions for aminoadamantanes to M2WT compared to negligible or weak binding to M2S31N. This is due to reshaping of the M2 pore when N31 is present, which, in contrast to wild-type (WT), leads (A) to the loss of the V27 pocket for the adamantyl cage and to a predominant orientation of the ligand's ammonium group toward the N-terminus and (B) to the lack of a helical kink upon ligand binding. The kink, which reduces the tilt of the C-terminal helical domain relative to the bilayer normal, includes the W41 primary gate for proton conductance and may prevent the gate from opening, representing an alternative view for how these drugs prevent proton conductance.


Asunto(s)
Amantadina/farmacología , Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Protones , Proteínas de la Matriz Viral/metabolismo , Ligandos , Análisis Espectral , Proteínas de la Matriz Viral/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA