Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(21): 5266-5270, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34562360

RESUMEN

This year's Lasker Award recognizes Dieter Oesterhelt, Peter Hegemann, and Karl Deisseroth for their discovery of microbial opsins as light-activated ion conductors and the development of optogenetics using these proteins to regulate neural activity in awake, behaving animals. Optogenetics has revolutionized neuroscience and transformed our understanding of brain function.


Asunto(s)
Bacterias/metabolismo , Opsinas/metabolismo , Optogenética , Animales , Bacteriorodopsinas/metabolismo , Encéfalo/metabolismo , Channelrhodopsins/metabolismo , Cianobacterias/metabolismo , Humanos , Membrana Púrpura
2.
Cell ; 178(3): 672-685.e12, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31257028

RESUMEN

Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal raphe nucleus (DRN), hereafter DRNVgat neurons, are activated by ambient heat and bidirectionally regulate energy expenditure through changes in both thermogenesis and locomotion. We find that DRNVgat neurons innervate brown fat via a descending projection to the raphe pallidus (RPa). These neurons also densely innervate ascending targets implicated in the central regulation of energy expenditure, including the hypothalamus and extended amygdala. Optogenetic stimulation of different projection targets reveals that DRNVgat neurons are capable of regulating thermogenesis through both a "direct" descending pathway through the RPa and multiple "indirect" ascending pathways. This work establishes a key regulatory role for DRNVgat neurons in controlling energy expenditure.


Asunto(s)
Metabolismo Energético , Neuronas GABAérgicas/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Mapeo Encefálico , Clozapina/análogos & derivados , Clozapina/farmacología , Núcleo Dorsal del Rafe/metabolismo , Expresión Génica/efectos de los fármacos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Temperatura , Termogénesis
3.
Cell ; 170(3): 429-442.e11, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753423

RESUMEN

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.


Asunto(s)
Regulación del Apetito , Núcleo Dorsal del Rafe/metabolismo , Neuronas/metabolismo , Animales , Peso Corporal , Encéfalo/fisiología , Núcleo Dorsal del Rafe/citología , Electrofisiología , Ayuno , Hambre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Optogenética
4.
Cell ; 184(22): 5687-5689, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34715024
5.
Cell ; 163(1): 84-94, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406372

RESUMEN

Leptin is a hormone produced by the adipose tissue that acts in the brain, stimulating white fat breakdown. We find that the lipolytic effect of leptin is mediated through the action of sympathetic nerve fibers that innervate the adipose tissue. Using intravital two-photon microscopy, we observe that sympathetic nerve fibers establish neuro-adipose junctions, directly "enveloping" adipocytes. Local optogenetic stimulation of sympathetic inputs induces a local lipolytic response and depletion of white adipose mass. Conversely, genetic ablation of sympathetic inputs onto fat pads blocks leptin-stimulated phosphorylation of hormone-sensitive lipase and consequent lipolysis, as do knockouts of dopamine ß-hydroxylase, an enzyme required for catecholamine synthesis. Thus, neuro-adipose junctions are necessary and sufficient for the induction of lipolysis in white adipose tissue and are an efferent effector of leptin action. Direct activation of sympathetic inputs to adipose tissues may represent an alternative approach to induce fat loss, circumventing central leptin resistance. PAPERCLIP.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Leptina/metabolismo , Lipólisis , Tejido Adiposo Blanco/inervación , Animales , Humanos , Ratones , Fosforilación , Receptores Adrenérgicos beta/metabolismo , Sistema Nervioso Simpático/metabolismo
6.
Cell ; 157(5): 1230-42, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855954

RESUMEN

The complexity and cellular heterogeneity of neural circuitry presents a major challenge to understanding the role of discrete neural populations in controlling behavior. While neuroanatomical methods enable high-resolution mapping of neural circuitry, these approaches do not allow systematic molecular profiling of neurons based on their connectivity. Here, we report the development of an approach for molecularly profiling projective neurons. We show that ribosomes can be tagged with a camelid nanobody raised against GFP and that this system can be engineered to selectively capture translating mRNAs from neurons retrogradely labeled with GFP. Using this system, we profiled neurons projecting to the nucleus accumbens. We then used an AAV to selectively profile midbrain dopamine neurons projecting to the nucleus accumbens. By comparing the captured mRNAs from each experiment, we identified a number of markers specific to VTA dopaminergic projection neurons. The current method provides a means for profiling neurons based on their projections.


Asunto(s)
Proteínas Fluorescentes Verdes/análisis , Neurobiología/métodos , Neuroimagen/métodos , Neuronas/citología , Ribosomas/química , Animales , Anticuerpos/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , Ratones Transgénicos , Núcleo Accumbens/citología , Biosíntesis de Proteínas
7.
Genes Dev ; 35(9-10): 729-748, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888560

RESUMEN

The MED1 subunit has been shown to mediate ligand-dependent binding of the Mediator coactivator complex to multiple nuclear receptors, including the adipogenic PPARγ, and to play an essential role in ectopic PPARγ-induced adipogenesis of mouse embryonic fibroblasts. However, the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue have been unclear. Here, after establishing requirements for MED1, including specific domains, for differentiation of 3T3L1 cells and both primary white and brown preadipocytes, we used multiple genetic approaches to assess requirements for MED1 in adipocyte formation, maintenance, and function in mice. We show that MED1 is indeed essential for the differentiation and/or function of both brown and white adipocytes, as its absence in these cells leads to, respectively, defective brown fat function and lipodystrophy. This work establishes MED1 as an essential transcriptional coactivator that ensures homeostatic functions of adipocytes.


Asunto(s)
Adipocitos/citología , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Células 3T3-L1 , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Complejo Mediador/genética , Ratones , Unión Proteica/genética , Dominios Proteicos
8.
Nature ; 609(7928): 761-771, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071158

RESUMEN

Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.


Asunto(s)
Tronco Encefálico , Conducta de Enfermedad , Neuronas , Animales , Anorexia/complicaciones , Área Postrema/citología , Área Postrema/metabolismo , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Conducta de Enfermedad/efectos de los fármacos , Letargia/complicaciones , Lipopolisacáridos/farmacología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/metabolismo
9.
Cell ; 151(5): 1126-37, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23178128

RESUMEN

The mammalian brain is composed of thousands of interacting neural cell types. Systematic approaches to establish the molecular identity of functional populations of neurons would advance our understanding of neural mechanisms controlling behavior. Here, we show that ribosomal protein S6, a structural component of the ribosome, becomes phosphorylated in neurons activated by a wide range of stimuli. We show that these phosphorylated ribosomes can be captured from mouse brain homogenates, thereby enriching directly for the mRNAs expressed in discrete subpopulations of activated cells. We use this approach to identify neurons in the hypothalamus regulated by changes in salt balance or food availability. We show that galanin neurons are activated by fasting and that prodynorphin neurons restrain food intake during scheduled feeding. These studies identify elements of the neural circuit that controls food intake and illustrate how the activity-dependent capture of cell-type-specific transcripts can elucidate the functional organization of a complex tissue.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Ribosomas/metabolismo , Transcriptoma , Animales , Encéfalo/citología , Ayuno , Conducta Alimentaria , Hipotálamo/citología , Hipotálamo/metabolismo , Ratones , Fosforilación , Proteína S6 Ribosómica/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(39): e2415550121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39297680

RESUMEN

The 2024 Lasker~DeBakey Clinical Medical Research Award has been given to Joel Habener and Svetlana Mojsov for their discovery of a new hormone GLP-1(7-37) and to Lotte Knudsen for her role in developing sustained acting versions of this hormone as a treatment for obesity. Each of the three had a distinct set of skills that made this advance possible; Habener is an endocrinologist and molecular biologist, Mojsov is a peptide chemist, and Knudsen is a pharmaceutical scientist. Their collective efforts have done what few thought possible-the development of highly effective medicines for reducing weight. Their research has also solved a mystery that began more than a century ago.


Asunto(s)
Péptido 1 Similar al Glucagón , Obesidad , Obesidad/tratamiento farmacológico , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Fármacos Antiobesidad/uso terapéutico , Fármacos Antiobesidad/farmacología , Descubrimiento de Drogas/historia , Descubrimiento de Drogas/métodos , Animales , Historia del Siglo XXI , Distinciones y Premios
11.
Proc Natl Acad Sci U S A ; 119(43): e2211688119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252036

RESUMEN

The nucleus accumbens (NAc) is a canonical reward center that regulates feeding and drinking but it is not known whether these behaviors are mediated by same or different neurons. We employed two-photon calcium imaging in awake, behaving mice and found that during the appetitive phase, both hunger and thirst are sensed by a nearly identical population of individual D1 and D2 neurons in the NAc that respond monophasically to food cues in fasted animals and water cues in dehydrated animals. During the consummatory phase, we identified three distinct neuronal clusters that are temporally correlated with action initiation, consumption, and cessation shared by feeding and drinking. These dynamic clusters also show a nearly complete overlap of individual D1 neurons and extensive overlap among D2 neurons. Modulating D1 and D2 neural activities revealed analogous effects on feeding versus drinking behaviors. In aggregate, these data show that a highly overlapping set of D1 and D2 neurons in NAc detect food and water reward and elicit concordant responses to hunger and thirst. These studies establish a general role of this mesolimbic pathway in mediating instinctive behaviors by controlling motivation-associated variables rather than conferring behavioral specificity.


Asunto(s)
Hambre , Sed , Animales , Calcio/metabolismo , Ratones , Núcleo Accumbens/fisiología , Recompensa , Agua/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34426522

RESUMEN

The construction of population-based variomes has contributed substantially to our understanding of the genetic basis of human inherited disease. Here, we investigated the genetic structure of Turkey from 3,362 unrelated subjects whose whole exomes (n = 2,589) or whole genomes (n = 773) were sequenced to generate a Turkish (TR) Variome that should serve to facilitate disease gene discovery in Turkey. Consistent with the history of present-day Turkey as a crossroads between Europe and Asia, we found extensive admixture between Balkan, Caucasus, Middle Eastern, and European populations with a closer genetic relationship of the TR population to Europeans than hitherto appreciated. We determined that 50% of TR individuals had high inbreeding coefficients (≥0.0156) with runs of homozygosity longer than 4 Mb being found exclusively in the TR population when compared to 1000 Genomes Project populations. We also found that 28% of exome and 49% of genome variants in the very rare range (allele frequency < 0.005) are unique to the modern TR population. We annotated these variants based on their functional consequences to establish a TR Variome containing alleles of potential medical relevance, a repository of homozygous loss-of-function variants and a TR reference panel for genotype imputation using high-quality haplotypes, to facilitate genome-wide association studies. In addition to providing information on the genetic structure of the modern TR population, these data provide an invaluable resource for future studies to identify variants that are associated with specific phenotypes as well as establishing the phenotypic consequences of mutations in specific genes.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Alelos , Consanguinidad , Exoma , Frecuencia de los Genes/genética , Flujo Genético , Genética de Población/métodos , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Haplotipos/genética , Migración Humana/tendencias , Humanos , Turquía/etnología , Secuenciación del Exoma/métodos
13.
Cell ; 135(2): 240-9, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18835024

RESUMEN

The increased white adipose tissue (WAT) mass associated with obesity is the result of both hyperplasia and hypertrophy of adipocytes. However, the mechanisms controlling adipocyte number are unknown in part because the identity of the physiological adipocyte progenitor cells has not been defined in vivo. In this report, we employ a variety of approaches, including a noninvasive assay for following fat mass reconstitution in vivo, to identify a subpopulation of early adipocyte progenitor cells (Lin(-):CD29(+):CD34(+):Sca-1(+):CD24(+)) resident in adult WAT. When injected into the residual fat pads of A-Zip lipodystrophic mice, these cells reconstitute a normal WAT depot and rescue the diabetic phenotype that develops in these animals. This report provides the identification of an undifferentiated adipocyte precursor subpopulation resident within the adipose tissue stroma that is capable of proliferating and differentiating into an adipose depot in vivo.


Asunto(s)
Adipocitos Blancos/citología , Células Madre/citología , Adipogénesis , Animales , Proliferación Celular , Femenino , Citometría de Flujo , Lipodistrofia/metabolismo , Ratones , Ratones Transgénicos , Obesidad/metabolismo
14.
Mol Psychiatry ; 26(11): 7029-7046, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34099874

RESUMEN

The subthalamic nucleus (STN) is a component of the basal ganglia and plays a key role to control movement and limbic-associative functions. STN modulation with deep brain stimulation (DBS) improves the symptoms of Parkinson's disease (PD) and obsessive-compulsive disorder (OCD) patients. However, DBS does not allow for cell-type-specific modulation of the STN. While extensive work has focused on elucidating STN functionality, the understanding of the role of specific cell types is limited. Here, we first performed an anatomical characterization of molecular markers for specific STN neurons. These studies revealed that most STN neurons express Pitx2, and that different overlapping subsets express Gabrr3, Ndnf, or Nos1. Next, we used optogenetics to define their roles in regulating locomotor and limbic functions in mice. Specifically, we showed that optogenetic photoactivation of STN neurons in Pitx2-Cre mice or of the Gabrr3-expressing subpopulation induces locomotor changes, and improves locomotion in a PD mouse model. In addition, photoactivation of Pitx2 and Gabrr3 cells induced repetitive grooming, a phenotype associated with OCD. Repeated stimulation prompted a persistent increase in grooming that could be reversed by fluoxetine treatment, a first-line drug therapy for OCD. Conversely, repeated inhibition of STNGabrr3 neurons suppressed grooming in Sapap3 KO mice, a model for OCD. Finally, circuit and functional mapping of STNGabrr3 neurons showed that these effects are mediated via projections to the globus pallidus/entopeduncular nucleus and substantia nigra reticulata. Altogether, these data identify Gabrr3 neurons as a key population in mediating the beneficial effects of STN modulation thus providing potential cellular targets for PD and OCD drug discovery.


Asunto(s)
Trastorno Obsesivo Compulsivo , Enfermedad de Parkinson , Núcleo Subtalámico , Animales , Ratones , Proteínas del Tejido Nervioso , Neuronas/fisiología , Trastorno Obsesivo Compulsivo/terapia , Enfermedad de Parkinson/terapia
15.
Nature ; 531(7596): 647-50, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27007848

RESUMEN

Targeted, temporally regulated neural modulation is invaluable in determining the physiological roles of specific neural populations or circuits. Here we describe a system for non-invasive, temporal activation or inhibition of neuronal activity in vivo and its use to study central nervous system control of glucose homeostasis and feeding in mice. We are able to induce neuronal activation remotely using radio waves or magnetic fields via Cre-dependent expression of a GFP-tagged ferritin fusion protein tethered to the cation-conducting transient receptor potential vanilloid 1 (TRPV1) by a camelid anti-GFP antibody (anti-GFP-TRPV1). Neuronal inhibition via the same stimuli is achieved by mutating the TRPV1 pore, rendering the channel chloride-permeable. These constructs were targeted to glucose-sensing neurons in the ventromedial hypothalamus in glucokinase-Cre mice, which express Cre in glucose-sensing neurons. Acute activation of glucose-sensing neurons in this region increases plasma glucose and glucagon, lowers insulin levels and stimulates feeding, while inhibition reduces blood glucose, raises insulin levels and suppresses feeding. These results suggest that pancreatic hormones function as an effector mechanism of central nervous system circuits controlling blood glucose and behaviour. The method we employ obviates the need for permanent implants and could potentially be applied to study other neural processes or used to regulate other, even dispersed, cell types.


Asunto(s)
Glucemia/metabolismo , Ingestión de Alimentos/fisiología , Campos Magnéticos , Neuronas/fisiología , Ondas de Radio , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Ferritinas/genética , Ferritinas/metabolismo , Glucagón/sangre , Glucoquinasa/metabolismo , Homeostasis , Hipoglucemia/metabolismo , Insulina/sangre , Integrasas/metabolismo , Ratones , Inhibición Neural , Hormonas Pancreáticas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Factores de Tiempo
16.
Am J Physiol Endocrinol Metab ; 320(2): E326-E332, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33284086

RESUMEN

Interoceptive signals from gut and adipose tissue and sensory cues from the environment are integrated by hubs in the brain to regulate feeding behavior and maintain homeostatic control of body weight. In vivo neural recordings have revealed that these signals control the activity of multiple layers of hunger neurons and eating is not only the result of feedback correction to a set point, but can also be under the influence of anticipatory regulations. A series of recent technical developments have revealed how peripheral and sensory signals, in particular, from the gut are conveyed to the brain to integrate neural circuits. Here, we describe the mechanisms involved in gastrointestinal stimulation by nutrients and how these signals act on the hindbrain to generate motivated behaviors. We also consider the organization of multidirectional intra- and extrahypothalamic circuits and how this has created a framework for understanding neural control of feeding.


Asunto(s)
Regulación del Apetito , Encéfalo/fisiología , Tracto Gastrointestinal/fisiología , Animales , Peso Corporal/fisiología , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Microbioma Gastrointestinal , Homeostasis/fisiología , Humanos , Hambre/fisiología , Transducción de Señal/fisiología
17.
Mol Psychiatry ; 25(3): 666-679, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-29875477

RESUMEN

Feeding is a complex motivated behavior controlled by a distributed neural network that processes sensory information to generate adaptive behavioral responses. Accordingly, studies using appetitive Pavlovian conditioning confirm that environmental cues that are associated with food availability can induce feeding even in satiated subjects. However, in mice, appetitive conditioning generally requires intensive training and thus can impede molecular studies that often require large numbers of animals. To address this, we developed and validated a simple and rapid context-induced feeding (Ctx-IF) task in which cues associated with food availability can later lead to increased food consumption in sated mice. We show that the associated increase in food consumption is driven by both positive and negative reinforcement and that spaced training is more effective than massed training. Ctx-IF can be completed in ~1 week and provides an opportunity to study the molecular mechanisms and circuitry underlying non-homeostatic eating. We have used this paradigm to map brain regions that are activated during Ctx-IF with cFos immunohistochemistry and found that the insular cortex, and other regions, are activated following exposure to cues denoting the availability of food. Finally, we show that inhibition of the insular cortex using GABA agonists impairs performance of the task. Our findings provide a novel assay in mice for defining the functional neuroanatomy of appetitive conditioning and identify specific brain regions that are activated during the development of learned behaviors that impact food consumption.


Asunto(s)
Conducta Alimentaria/fisiología , Refuerzo en Psicología , Saciedad/fisiología , Animales , Encéfalo/fisiología , Condicionamiento Clásico/fisiología , Señales (Psicología) , Ingestión de Alimentos/fisiología , Alimentos , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Motivación/fisiología , Corteza Prefrontal/fisiología
18.
Proc Natl Acad Sci U S A ; 115(26): E6039-E6047, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891714

RESUMEN

Leptin expression decreases after fat loss and is increased when obesity develops, and its proper quantitative regulation is essential for the homeostatic control of fat mass. We previously reported that a distant leptin enhancer 1 (LE1), 16 kb upstream from the transcription start site (TSS), confers fat-specific expression in a bacterial artificial chromosome transgenic (BACTG) reporter mouse. However, this and the other elements that we identified do not account for the quantitative changes in leptin expression that accompany alterations of adipose mass. In this report, we used an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify a 17-bp noncanonical peroxisome proliferator-activated receptor gamma (PPARγ)/retinoid X receptor alpha (RXRα)-binding site, leptin regulatory element 1 (LepRE1), within LE1, and show that it is necessary for the fat-regulated quantitative control of reporter (luciferase) expression. While BACTG reporter mice with mutations in this sequence still show fat-specific expression, luciferase is no longer decreased after food restriction and weight loss. Similarly, the increased expression of leptin reporter associated with obesity in ob/ob mice is impaired. A functionally analogous LepRE1 site is also found in a second, redundant DNA regulatory element 13 kb downstream of the TSS. These data uncouple the mechanisms conferring qualitative and quantitative expression of the leptin gene and further suggest that factor(s) that bind to LepRE1 quantitatively control leptin expression and might be components of a lipid-sensing system in adipocytes.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Regulación de la Expresión Génica , Leptina , PPAR gamma , Elementos de Respuesta , Receptor alfa X Retinoide , Adipocitos/citología , Tejido Adiposo/citología , Animales , Línea Celular , Leptina/biosíntesis , Leptina/genética , Ratones , Ratones Obesos
19.
Proc Natl Acad Sci U S A ; 115(29): E6900-E6909, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967172

RESUMEN

Neurons of the medullary reticular nucleus gigantocellularis (NGC) and their targets have recently been a focus of research on mechanisms supporting generalized CNS arousal (GA) required for proper cognitive functions. Using the retro-TRAP method, we characterized transcripts enriched in NGC neurons which have projections to the thalamus. The unique expression and activation of the endothelial nitric oxide (eNOS) signaling pathway in these cells and their intimate connections with blood vessels indicate that these neurons exert direct neurovascular coupling. Production of nitric oxide (NO) within eNOS-positive NGC neurons increases after environmental perturbations, indicating a role for eNOS/NO in modulating environmentally appropriate levels of GA. Inhibition of NO production causes dysregulated behavioral arousal after exposure to environmental perturbation. Further, our findings suggest interpretations for associations between psychiatric disorders and mutations in the eNOS locus.


Asunto(s)
Nivel de Alerta/fisiología , Encéfalo , Circulación Cerebrovascular/fisiología , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo III , Transducción de Señal/fisiología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/citología , Encéfalo/metabolismo , Sitios Genéticos , Ratones , Ratones Transgénicos , Neuronas/citología , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Óxido Nítrico Sintasa de Tipo III/genética
20.
Nature ; 493(7433): 532-6, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23235832

RESUMEN

Ventral tegmental area (VTA) dopamine neurons in the brain's reward circuit have a crucial role in mediating stress responses, including determining susceptibility versus resilience to social-stress-induced behavioural abnormalities. VTA dopamine neurons show two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing. Phasic firing of the neurons, which is well known to encode reward signals, is upregulated by repeated social-defeat stress, a highly validated mouse model of depression. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no apparent change in firing rate in resilient individuals. However, direct evidence--in real time--linking dopamine neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here we took advantage of the temporal precision and cell-type and projection-pathway specificity of optogenetics to show that enhanced phasic firing of these neurons mediates susceptibility to social-defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing in VTA dopamine neurons of mice undergoing a subthreshold social-defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social-defeat stress. Furthermore, we show differences in projection-pathway specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social-defeat stress. Conversely, optogenetic inhibition of the VTA-NAc projection induced resilience, whereas inhibition of the VTA-mPFC projection promoted susceptibility. Overall, these studies reveal novel firing-pattern- and neural-circuit-specific mechanisms of depression.


Asunto(s)
Depresión/fisiopatología , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/citología , Conducta Social , Estrés Psicológico/fisiopatología , Animales , Depresión/etiología , Preferencias Alimentarias , Masculino , Ratones , Vías Nerviosas , Núcleo Accumbens/fisiología , Optogenética , Fenotipo , Corteza Prefrontal/fisiología , Estrés Psicológico/complicaciones , Sacarosa/administración & dosificación , Factores de Tiempo , Área Tegmental Ventral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA