Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 16(5): e1008804, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32407316

RESUMEN

Cattle are ideally suited to investigate the genetics of male reproduction, because semen quality and fertility are recorded for all ejaculates of artificial insemination bulls. We analysed 26,090 ejaculates of 794 Brown Swiss bulls to assess ejaculate volume, sperm concentration, sperm motility, sperm head and tail anomalies and insemination success. The heritability of the six semen traits was between 0 and 0.26. Genome-wide association testing on 607,511 SNPs revealed a QTL on bovine chromosome 6 that was associated with sperm motility (P = 2.5 x 10-27), head (P = 2.0 x 10-44) and tail anomalies (P = 7.2 x 10-49) and insemination success (P = 9.9 x 10-13). The QTL harbors a recessive allele that compromises semen quality and male fertility. We replicated the effect of the QTL on fertility (P = 7.1 x 10-32) in an independent cohort of 2481 Brown Swiss bulls. The analysis of whole-genome sequencing data revealed that a synonymous variant (BTA6:58373887C>T, rs474302732) in WDR19 encoding WD repeat-containing protein 19 was in linkage disequilibrium with the fertility-associated haplotype. WD repeat-containing protein 19 is a constituent of the intraflagellar transport complex that is essential for the physiological function of motile cilia and flagella. Bioinformatic and transcription analyses revealed that the BTA6:58373887 T-allele activates a cryptic exonic splice site that eliminates three evolutionarily conserved amino acids from WDR19. Western blot analysis demonstrated that the BTA6:58373887 T-allele decreases protein expression. We make the remarkable observation that, in spite of negative effects on semen quality and bull fertility, the BTA6:58373887 T-allele has a frequency of 24% in the Brown Swiss population. Our findings are the first to uncover a variant that is associated with quantitative variation in semen quality and male fertility in cattle.


Asunto(s)
Empalme Alternativo , Proteínas del Citoesqueleto/genética , Infertilidad Masculina/genética , Polimorfismo de Nucleótido Simple , Semen/fisiología , Animales , Bovinos , Cromosomas de los Mamíferos/genética , Estudio de Asociación del Genoma Completo , Inseminación Artificial/veterinaria , Masculino , Carácter Cuantitativo Heredable , Análisis de Semen/veterinaria , Motilidad Espermática , Secuenciación Completa del Genoma
2.
Vet Pathol ; 59(2): 319-327, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34856834

RESUMEN

A new gene defect in Fleckvieh calves leads to a syndrome with partial phenotype overlap with bovine hereditary zinc deficiency. A mutation in a gene encoding phospholipase D4 (PLD4), an endosomal exonuclease, causes the disorder. In mice, PLD4 activity indirectly regulates the Toll-like receptor 9 (TLR9) pathway via degradation of microbial DNA. PLD4 absence thus results in visceral macrophage activation comparable to human macrophage activation syndrome. In this study, disease progression and the role of macrophages in affected calves were monitored clinically, clinicopathologically, and histologically over time. Breeding data identified 73 risk matings of heterozygous carriers resulting in 54 potentially PLD4-deficient calves born on farms. PLD4 status was examined via 5'-exonuclease assay, detecting 6 calves carrying the defect. These were purchased and monitored daily until final necropsy. The calves developed progressive skin lesions starting with small scaling areas terminating in severe crusting dermatitis, especially in areas with mechanical exposure. Histological and immunohistochemical analyses indicated that macrophages with cytoplasmic vacuolation increased considerably in skin sections obtained weekly during the disease course. Macrophage increase correlated with increased dermal lesion severity. Macrophage activation was confirmed by prominent phagocytic activity in the superficial dermis using electron microscopy. Dermal mRNA abundance of CCL2 and CCL3 measured by quantitative polymerase chain reaction verified macrophage activation. Further increase in mRNA of downstream molecule MyD88 and cytokine IL12b connected bovine PLD4 deficiency to increased TLR9 pathway activation. In contrast to human macrophage activation syndrome, the main feature of bovine PLD4 deficiency was local disease in organs with contact to microbial DNA (skin, intestine, lungs).


Asunto(s)
Enfermedades de los Bovinos , Síndrome de Activación Macrofágica , Fosfolipasa D , Enfermedades de los Roedores , Animales , Bovinos , Enfermedades de los Bovinos/patología , ADN , Progresión de la Enfermedad , Exonucleasas , Síndrome de Activación Macrofágica/veterinaria , Macrófagos/patología , Ratones , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Fosfolipasas , ARN Mensajero , Receptor Toll-Like 9/genética
3.
PLoS Genet ; 15(4): e1007989, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31034467

RESUMEN

We carried out whole genome resequencing of 127 chicken including red jungle fowl and multiple populations of commercial broilers and layers to perform a systematic screening of adaptive changes in modern chicken (Gallus gallus domesticus). We uncovered >21 million high quality SNPs of which 34% are newly detected variants. This panel comprises >115,000 predicted amino-acid altering substitutions as well as 1,100 SNPs predicted to be stop-gain or -loss, several of which reach high frequencies. Signatures of selection were investigated both through analyses of fixation and differentiation to reveal selective sweeps that may have had prominent roles during domestication and breed development. Contrasting wild and domestic chicken we confirmed selection at the BCO2 and TSHR loci and identified 34 putative sweeps co-localized with ALX1, KITLG, EPGR, IGF1, DLK1, JPT2, CRAMP1, and GLI3, among others. Analysis of enrichment between groups of wild vs. commercials and broilers vs. layers revealed a further panel of candidate genes including CORIN, SKIV2L2 implicated in pigmentation and LEPR, MEGF10 and SPEF2, suggestive of production-oriented selection. SNPs with marked allele frequency differences between wild and domestic chicken showed a highly significant deficiency in the proportion of amino-acid altering mutations (P<2.5×10-6). The results contribute to the understanding of major genetic changes that took place during the evolution of modern chickens and in poultry breeding.


Asunto(s)
Adaptación Biológica , Pollos/genética , Genoma , Genómica , Alelos , Animales , Biología Computacional/métodos , Frecuencia de los Genes , Variación Genética , Genómica/métodos , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple
4.
BMC Genomics ; 22(1): 363, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011274

RESUMEN

BACKGROUND: Reference-guided read alignment and variant genotyping are prone to reference allele bias, particularly for samples that are greatly divergent from the reference genome. A Hereford-based assembly is the widely accepted bovine reference genome. Haplotype-resolved genomes that exceed the current bovine reference genome in quality and continuity have been assembled for different breeds of cattle. Using whole genome sequencing data of 161 Brown Swiss cattle, we compared the accuracy of read mapping and sequence variant genotyping as well as downstream genomic analyses between the bovine reference genome (ARS-UCD1.2) and a highly continuous Angus-based assembly (UOA_Angus_1). RESULTS: Read mapping accuracy did not differ notably between the ARS-UCD1.2 and UOA_Angus_1 assemblies. We discovered 22,744,517 and 22,559,675 high-quality variants from ARS-UCD1.2 and UOA_Angus_1, respectively. The concordance between sequence- and array-called genotypes was high and the number of variants deviating from Hardy-Weinberg proportions was low at segregating sites for both assemblies. More artefactual INDELs were genotyped from UOA_Angus_1 than ARS-UCD1.2 alignments. Using the composite likelihood ratio test, we detected 40 and 33 signatures of selection from ARS-UCD1.2 and UOA_Angus_1, respectively, but the overlap between both assemblies was low. Using the 161 sequenced Brown Swiss cattle as a reference panel, we imputed sequence variant genotypes into a mapping cohort of 30,499 cattle that had microarray-derived genotypes using a two-step imputation approach. The accuracy of imputation (Beagle R2) was very high (0.87) for both assemblies. Genome-wide association studies between imputed sequence variant genotypes and six dairy traits as well as stature produced almost identical results from both assemblies. CONCLUSIONS: The ARS-UCD1.2 and UOA_Angus_1 assemblies are suitable for reference-guided genome analyses in Brown Swiss cattle. Although differences in read mapping and genotyping accuracy between both assemblies are negligible, the choice of the reference genome has a large impact on detecting signatures of selection that already reached fixation using the composite likelihood ratio test. We developed a workflow that can be adapted and reused to compare the impact of reference genomes on genome analyses in various breeds, populations and species.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Animales , Bovinos/genética , Perros , Genómica , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
5.
BMC Genomics ; 22(1): 38, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413103

RESUMEN

BACKGROUND: Atypical external genitalia are often a sign of reproductive organ pathologies and infertility with both environmental or genetic causes, including karyotypic abnormalities. Genome-wide association studies (GWAS) provide a means for identifying chromosomal regions harboring deleterious DNA-variants causing such phenotypes. We performed a GWAS to unravel the causes of incidental cases of atypically small vulvae in German Landrace gilts. RESULTS: A case-control GWAS involving Illumina porcine SNP60 BeadChip-called genotypes of 17 gilts with atypically small vulvae and 1818 control animals (fertile German Landrace sows) identified a significantly associated region on the X-chromosome (P = 8.81 × 10- 43). Inspection of whole-genome sequencing data in the critical area allowed us to pinpoint a likely causal variant in the form of a nonsense mutation of bone morphogenetic protein-15 (BMP15; Sscrofa11.1_X:g.44618787C>T, BMP15:p.R212X). The mutant allele occurs at a frequency of 6.2% in the German Landrace breeding population. Homozygous gilts exhibit underdeveloped, most likely not functional ovaries and are not fertile. Male carriers do not seem to manifest defects. Heterozygous sows produce 0.41±0.02 (P=4.5 × 10-83) piglets more than wildtype animals. However, the mutant allele's positive effect on litter size accompanies a negative impact on lean meat growth. CONCLUSION: Our results provide an example for the power of GWAS in identifying the genetic causes of a fuzzy phenotype and add to the list of natural deleterious BMP15 mutations that affect fertility in a dosage-dependent manner, the first time in a poly-ovulatory species. We advise eradicating the mutant allele from the German Landrace breeding population since the adverse effects on the lean meat growth outweigh the larger litter size in heterozygous sows.


Asunto(s)
Proteína Morfogenética Ósea 15 , Infertilidad , Animales , Proteína Morfogenética Ósea 15/genética , Codón sin Sentido , Femenino , Estudio de Asociación del Genoma Completo , Tamaño de la Camada/genética , Masculino , Embarazo , Porcinos
6.
Mol Ecol ; 30(24): 6701-6717, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34534381

RESUMEN

To predict species responses to anthropogenic disturbances and climate change, it is reasonable to use species with high sensitivity to such factors. Snow sheep (Ovis nivicola) could represent a good candidate for this; as the only large herbivore species adapted to the cold and alpine habitats of northeastern Siberia, it plays a crucial role in its ecosystem. Despite having an extensive geographical distribution among all ovine species, it is one of the least studied. In this study, we sequenced and analysed six genomes of snow sheep in combination with all other wild sheep species to infer key aspects of their evolutionary history and unveil the genetic basis of their adaptation to subarctic environments. Despite their large census population size, snow sheep genomes showed remarkably low heterozygosity, which could reflect the effect of isolation and historical bottlenecks that we inferred using the pairwise sequential Markovian coalescent and runs of homozygosity. F4 -statistics indicated instances of introgression involving snow sheep with argali (Ovis ammon) and Dall (Ovis dalli) sheep, suggesting that these species might have been more widespread during the Pleistocene. Furthermore, the introgressed segments, which were identified using mainly minimum relative node depth, covered genes associated with immunity, adipogenesis and morphology-related traits, representing potential targets of adaptive introgression. Genes related to mitochondrial functions and thermogenesis associated with adipose tissue were identified to be under selection. Overall, our data suggest introgression as a mechanism facilitating adaptation in wild sheep species and provide insights into the genetic mechanisms underlying cold adaptation in snow sheep.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Aclimatación/genética , Animales , Genoma , Ovinos/genética , Secuenciación Completa del Genoma
7.
Mamm Genome ; 31(1-2): 54-67, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31960078

RESUMEN

Actinobacillus (A.) pleuropneumoniae is one of the most important respiratory pathogens in global pig production. Antimicrobial treatment and vaccination provide only limited protection, but genetic disease resistance is a very promising alternative for sustainable prophylaxis. Previous studies have discovered multiple QTL that may explain up to 30% of phenotypic variance. Based on these findings, the aim of the present study was to use genomic sequencing to identify genetic markers for resistance to pleuropneumonia in a segregating commercial German Landrace line. 163 pigs were infected with A. pleuropneumoniae Serotype 7 through a standardized aerosol infection method. Phenotypes were accurately defined on a clinical, pathological and microbiological basis. The 58 pigs with the most extreme phenotypes were genotyped by sequencing (next-generation sequencing). SNPs were used in a genome-wide association study. The study identified genome-wide associated SNPs on three chromosomes, two of which were chromosomes of QTL which had been mapped in a recent experiment. Each variant explained up to 20% of the total phenotypic variance. Combined, the three variants explained 52.8% of the variance. The SNPs are located in genes involved in the pathomechanism of pleuropneumonia. This study confirms the genetic background for the host's resistance to pleuropneumonia and indicates a potential role of three candidates on SSC2, SSC12 and SSC15. Favorable gene variants are segregating in commercial populations. Further work is needed to verify the results in a controlled study and to identify the functional QTN.


Asunto(s)
Resistencia a la Enfermedad/genética , Pleuroneumonía/veterinaria , Sitios de Carácter Cuantitativo/genética , Enfermedades de los Porcinos/inmunología , Infecciones por Actinobacillus/inmunología , Infecciones por Actinobacillus/microbiología , Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/patogenicidad , Animales , Cruzamiento , Mapeo Cromosómico/veterinaria , Marcadores Genéticos , Variación Genética , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Fenotipo , Pleuroneumonía/inmunología , Pleuroneumonía/microbiología , Polimorfismo de Nucleótido Simple , Porcinos , Enfermedades de los Porcinos/microbiología
8.
BMC Genet ; 21(1): 126, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213385

RESUMEN

BACKGROUND: The coat colour of fallow deer is highly variable and even white animals can regularly be observed in game farming and in the wild. Affected animals do not show complete albinism but rather some residual pigmentation resembling a very pale beige dilution of coat colour. The eyes and claws of the animals are pigmented. To facilitate the conservation and management of such animals, it would be helpful to know the responsible gene and causative variant. We collected 102 samples from 22 white animals and from 80 animals with wildtype coat colour. The samples came from 12 different wild flocks or game conservations located in different regions of Germany, at the border to Luxembourg and in Poland. The genomes of one white hind and her brown calf were sequenced. RESULTS: Based on a list of colour genes of the International Federation of Pigment Cell Societies ( http://www.ifpcs.org/albinism/ ), a variant in the MC1R gene (NM_174108.2:c.143 T > C) resulting in an amino acid exchange from leucine to proline at position 48 of the MC1R receptor protein (NP_776533.1:p.L48P) was identified as a likely cause of coat colour dilution. A gene test revealed that all animals of the white phenotype were of genotype CC whereas all pigmented animals were of genotype TT or TC. The study showed that 14% of the pigmented (brown or dark pigmented) animals carried the white allele. CONCLUSIONS: A genome-wide scan study led to a molecular test to determine the coat colour of fallow deer. Identification of the MC1R gene provides a deeper insight into the mechanism of dilution. The gene marker is now available for the conservation of white fallow deer in wild and farmed animals.


Asunto(s)
Pelaje de Animal , Ciervos/genética , Pigmentación , Receptor de Melanocortina Tipo 1/genética , Alelos , Animales , Femenino , Marcadores Genéticos , Genotipo , Alemania , Luxemburgo , Mutación Missense , Fenotipo , Polonia , Polimorfismo de Nucleótido Simple
9.
BMC Genet ; 21(1): 14, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041521

RESUMEN

BACKGROUND: Red deer with very pale coat colour are observed sporadically. In the red deer (Cervus elaphus) population of Reinhardswald in Germany, about 5% of animals have a white coat colour that is not associated with albinism. In order to facilitate the conservation of the animals, it should be determined whether and to what extent brown animals carry the white gene. For this purpose, samples of one white hind and her brown calf were available for whole genome sequencing to identify the single nucleotide polymorphism(s) responsible for the white phenotype. Subsequently, samples from 194 brown and 11 white animals were genotyped. RESULTS: Based on a list of colour genes of the International Federation of Pigment Cell Societies, a non-synonymous mutation with exchange of a glycine residue at position 291 of the tyrosinase protein by arginine was identified as the cause of dilution of the coat colour. A gene test led to exactly matching genotypes in all examined animals. The study showed that 14% of the brown animals carry the white gene. This provides a simple and reliable way of conservation for the white animals. However, results could not be transferred to another, unrelated red deer population with white animals. Although no brown animals with a white tyrosinase genotype were detected, the cause for the white colouring in this population was different. CONCLUSIONS: A gene test for the conservation of white red deer is available for the population of the Reinhardswald. While mutations in the tyrosinase are commonly associated with oculocutaneous albinism type 1, the amino acid exchange at position 291 was found to be associated with coat colour dilution in Cervus elaphus.


Asunto(s)
Pelaje de Animal , Ciervos/genética , Estudio de Asociación del Genoma Completo , Monofenol Monooxigenasa/genética , Fenotipo , Pigmentos Biológicos , Polimorfismo de Nucleótido Simple , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
10.
BMC Genomics ; 20(1): 286, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975085

RESUMEN

BACKGROUND: Cattle populations are highly amenable to the genetic mapping of male reproductive traits because longitudinal data on ejaculate quality and dense microarray-derived genotypes are available for thousands of artificial insemination bulls. Two young Nordic Red bulls delivered sperm with low progressive motility (i.e., asthenospermia) during a semen collection period of more than four months. The bulls were related through a common ancestor on both their paternal and maternal ancestry. Thus, a recessive mode of inheritance of asthenospermia was suspected. RESULTS: Both bulls were genotyped at 54,001 SNPs using the Illumina BovineSNP50 Bead chip. A scan for autozygosity revealed that they were identical by descent for a 2.98 Mb segment located on bovine chromosome 25. This haplotype was not found in the homozygous state in 8557 fertile bulls although five homozygous haplotype carriers were expected (P = 0.018). Whole genome-sequencing uncovered that both asthenospermic bulls were homozygous for a mutation that disrupts a canonical 5' splice donor site of CCDC189 encoding the coiled-coil domain containing protein 189. Transcription analysis showed that the derived allele activates a cryptic splice site resulting in a frameshift and premature termination of translation. The mutated CCDC189 protein is truncated by more than 40%, thus lacking the flagellar C1a complex subunit C1a-32 that is supposed to modulate the physiological movement of the sperm flagella. The mutant allele occurs at a frequency of 2.5% in Nordic Red cattle. CONCLUSIONS: Our study in cattle uncovered that CCDC189 is required for physiological movement of sperm flagella thus enabling active progression of spermatozoa and fertilization. A direct gene test may be implemented to monitor the asthenospermia-associated allele and prevent the birth of homozygous bulls that are infertile. Our results have been integrated in the Online Mendelian Inheritance in Animals (OMIA) database ( https://omia.org/OMIA002167/9913/ ).


Asunto(s)
Industria Lechera , Infertilidad Masculina/genética , Animales , Bovinos , Cromosomas de los Mamíferos/genética , Genotipo , Homocigoto , Masculino , Mitocondrias/metabolismo , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/genética
11.
J Dairy Sci ; 101(2): 1292-1296, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29153527

RESUMEN

The accuracy of genomic prediction determines response to selection. It has been hypothesized that accuracy of genomic breeding values can be increased by a higher density of variants. We used imputed whole-genome sequence data and various single nucleotide polymorphism (SNP) selection criteria to estimate genomic breeding values in Brown Swiss cattle. The extreme scenarios were 50K SNP chip data and whole-genome sequence data with intermediate scenarios using linkage disequilibrium-pruned whole-genome sequence variants, only variants predicted to be missense, or the top 50K variants from genome-wide association studies. We estimated genomic breeding values for 3 traits (somatic cell score, nonreturn rate in heifers, and stature) and found differences in accuracy levels between traits. However, among different SNP sets, accuracy was very similar. In our analyses, sequence data led to a marginal increase in accuracy for 1 trait and was lower than 50K for the other traits. We concluded that the inclusion of imputed whole-genome sequence data does not lead to increased accuracy of genomic prediction with the methods.


Asunto(s)
Bovinos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Genoma , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Femenino , Genómica/métodos , Genotipo , Desequilibrio de Ligamiento , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria
12.
BMC Genomics ; 18(1): 853, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29121857

RESUMEN

BACKGROUND: Genotyping and whole-genome sequencing data have been generated for hundreds of thousands of cattle. International consortia used these data to compile imputation reference panels that facilitate the imputation of sequence variant genotypes for animals that have been genotyped using dense microarrays. Association studies with imputed sequence variant genotypes allow for the characterization of quantitative trait loci (QTL) at nucleotide resolution particularly when individuals from several breeds are included in the mapping populations. RESULTS: We imputed genotypes for 28 million sequence variants in 17,229 cattle of the Braunvieh, Fleckvieh and Holstein breeds in order to compile large mapping populations that provide high power to identify QTL for milk production traits. Association tests between imputed sequence variant genotypes and fat and protein percentages in milk uncovered between six and thirteen QTL (P < 1e-8) per breed. Eight of the detected QTL were significant in more than one breed. We combined the results across breeds using meta-analysis and identified a total of 25 QTL including six that were not significant in the within-breed association studies. Two missense mutations in the ABCG2 (p.Y581S, rs43702337, P = 4.3e-34) and GHR (p.F279Y, rs385640152, P = 1.6e-74) genes were the top variants at QTL on chromosomes 6 and 20. Another known causal missense mutation in the DGAT1 gene (p.A232K, rs109326954, P = 8.4e-1436) was the second top variant at a QTL on chromosome 14 but its allelic substitution effects were inconsistent across breeds. It turned out that the conflicting allelic substitution effects resulted from flaws in the imputed genotypes due to the use of a multi-breed reference population for genotype imputation. CONCLUSIONS: Many QTL for milk production traits segregate across breeds and across-breed meta-analysis has greater power to detect such QTL than within-breed association testing. Association testing between imputed sequence variant genotypes and phenotypes of interest facilitates identifying causal mutations provided the accuracy of imputation is high. However, true causal mutations may remain undetected when the imputed sequence variant genotypes contain flaws. It is highly recommended to validate the effect of known causal variants in order to assess the ability to detect true causal mutations in association studies with imputed sequence variants.


Asunto(s)
Tejido Adiposo/citología , Proteínas de la Leche/metabolismo , Leche/metabolismo , Nucleótidos/genética , Sitios de Carácter Cuantitativo/genética , Animales , Secuencia de Bases , Bovinos , Genotipo
13.
BMC Genomics ; 18(1): 999, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29284405

RESUMEN

BACKGROUND: Within the last few years a large amount of genomic information has become available in cattle. Densities of genomic information vary from a few thousand variants up to whole genome sequence information. In order to combine genomic information from different sources and infer genotypes for a common set of variants, genotype imputation is required. RESULTS: In this study we evaluated the accuracy of imputation from high density chips to whole genome sequence data in Brown Swiss cattle. Using four popular imputation programs (Beagle, FImpute, Impute2, Minimac) and various compositions of reference panels, the accuracy of the imputed sequence variant genotypes was high and differences between the programs and scenarios were small. We imputed sequence variant genotypes for more than 1600 Brown Swiss bulls and performed genome-wide association studies for milk fat percentage at two stages of lactation. We found one and three quantitative trait loci for early and late lactation fat content, respectively. Known causal variants that were imputed from the sequenced reference panel were among the most significantly associated variants of the genome-wide association study. CONCLUSIONS: Our study demonstrates that whole-genome sequence information can be imputed at high accuracy in cattle populations. Using imputed sequence variant genotypes in genome-wide association studies may facilitate causal variant detection.


Asunto(s)
Bovinos/genética , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN , Animales , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple
14.
BMC Genomics ; 18(1): 910, 2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29178833

RESUMEN

BACKGROUND: The detection of quantitative trait loci has accelerated with recent developments in genomics. The introduction of genomic selection in combination with sequencing efforts has made a large amount of genotypic data available. Functional traits such as fertility and calving traits have been included in routine genomic estimation of breeding values making large quantities of phenotypic data available for these traits. This data was used to investigate the genetics underlying fertility and calving traits and to identify potentially causative genomic regions and variants. We performed genome-wide association studies for 13 functional traits related to female fertility as well as for direct and maternal calving ease based on imputed whole-genome sequences. Deregressed breeding values from ~1000-5000 bulls per trait were used to test for associations with approximately 10 million imputed sequence SNPs. RESULTS: We identified a QTL on BTA17 associated with non-return rate at 56 days and with interval from first to last insemination. We found two significantly associated non-synonymous SNPs within this QTL region. Two more QTL for fertility traits were identified on BTA25 and 29. A single QTL was identified for maternal calving traits on BTA13 whereas three QTL on BTA19, 21 and 25 were identified for direct calving traits. The QTL on BTA19 co-localizes with the reported BH2 haplotype. The QTL on BTA25 is concordant for fertility and calving traits and co-localizes with a QTL previously reported to influence stature and related traits in Brown Swiss dairy cattle. CONCLUSION: The detection of QTL and their causative variants remains challenging. Combining comprehensive phenotypic data with imputed whole genome sequences seems promising. We present a QTL on BTA17 for female fertility in dairy cattle with two significantly associated non-synonymous SNPs, along with five additional QTL for fertility traits and calving traits. For all of these we fine mapped the regions and suggest candidate genes and candidate variants.


Asunto(s)
Bovinos/genética , Fertilidad/genética , Sitios de Carácter Cuantitativo , Animales , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo , Genómica , Masculino , Embarazo , Mortinato/genética
15.
BMC Genomics ; 18(1): 565, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28750625

RESUMEN

BACKGROUND: To date, genome-scale analyses in the domestic horse have been limited by suboptimal single nucleotide polymorphism (SNP) density and uneven genomic coverage of the current SNP genotyping arrays. The recent availability of whole genome sequences has created the opportunity to develop a next generation, high-density equine SNP array. RESULTS: Using whole genome sequence from 153 individuals representing 24 distinct breeds collated by the equine genomics community, we cataloged over 23 million de novo discovered genetic variants. Leveraging genotype data from individuals with both whole genome sequence, and genotypes from lower-density, legacy SNP arrays, a subset of ~5 million high-quality, high-density array candidate SNPs were selected based on breed representation and uniform spacing across the genome. Considering probe design recommendations from a commercial vendor (Affymetrix, now Thermo Fisher Scientific) a set of ~2 million SNPs were selected for a next-generation high-density SNP chip (MNEc2M). Genotype data were generated using the MNEc2M array from a cohort of 332 horses from 20 breeds and a lower-density array, consisting of ~670 thousand SNPs (MNEc670k), was designed for genotype imputation. CONCLUSIONS: Here, we document the steps taken to design both the MNEc2M and MNEc670k arrays, report genomic and technical properties of these genotyping platforms, and demonstrate the imputation capabilities of these tools for the domestic horse.


Asunto(s)
Técnicas de Genotipaje/métodos , Caballos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Animales , Frecuencia de los Genes , Técnicas de Genotipaje/normas , Desequilibrio de Ligamiento , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Estándares de Referencia , Secuenciación Completa del Genoma
16.
Biol Reprod ; 97(2): 249-257, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28679164

RESUMEN

Intrauterine growth restriction (IUGR) is caused by dysregulation of placental metabolism. Paternally inherited IUGR mutations in the fetus influence maternal physiology via the placenta. However, it is not known whether the maternal placenta also affects the extent of IUGR in such fetuses. In cattle and other ruminants, maternal-fetal communication occurs primarily at the placentomes. We previously identified a 3΄ deletion in the noncoding MER1 repeat containing imprinted transcript 1 (MIMT1) gene that, when inherited from the sire, causes IUGR and late abortion in Ayshire cattle with variable levels of severity. Here, we compared the transcriptome and genomic imprinting in fetal and maternal placentome components of wild-type and MIMT1Del/WT fetuses before IUGR became apparent, to identify key early events. Transcriptome analysis revealed fewer differentially expressed genes in maternal than fetal MIMT1Del/WT placentome. AST1, within the PEG3 domain, was the only gene consistently reduced in IUGR in both fetal and maternal samples. Several genes showed an imprinting pattern associated with IUGR, of which only secernin 3 (SCRN3) and paternally expressed 3 (PEG3) were differentially imprinted in both placentome components. Loss of strictly monoallelic, allele-specific expression (∼80:20) of PEG3 in the maternal MIMT1Del/WT placenta could be associated with incomplete penetrance of MIMT1Del. Our data show that dysregulation of the PEG3 domain is involved in IUGR, but also reveal that maternal placental tissues may affect the penetrance of the paternally inherited IUGR mutation.


Asunto(s)
Enfermedades de los Bovinos/genética , Retardo del Crecimiento Fetal/veterinaria , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Bovinos , Enfermedades de los Bovinos/patología , Metilación de ADN , Femenino , Retardo del Crecimiento Fetal/genética , Predisposición Genética a la Enfermedad , Impresión Genómica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Placenta/metabolismo , Embarazo
17.
Genet Sel Evol ; 49(1): 7, 2017 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-28088170

RESUMEN

BACKGROUND: Multi-marker methods, which fit all markers simultaneously, were originally tailored for genomic selection purposes, but have proven to be useful also in association analyses, especially the so-called BayesC Bayesian methods. In a recent study, BayesD extended BayesC towards accounting for dominance effects and improved prediction accuracy and persistence in genomic selection. The current study investigated the power and precision of BayesC and BayesD in genome-wide association studies by means of stochastic simulations and applied these methods to a dairy cattle dataset. METHODS: The simulation protocol was designed to mimic the genetic architecture of quantitative traits as realistically as possible. Special emphasis was put on the joint distribution of the additive and dominance effects of causative mutations. Additive marker effects were estimated by BayesC and additive and dominance effects by BayesD. The dependencies between additive and dominance effects were modelled in BayesD by choosing appropriate priors. A sliding-window approach was used. For each window, the R. Fernando window posterior probability of association was calculated and this was used for inference purpose. The power to map segregating causal effects and the mapping precision were assessed for various marker densities up to full sequence information and various window sizes. RESULTS: Power to map a QTL increased with higher marker densities and larger window sizes. This held true for both methods. Method BayesD had improved power compared to BayesC. The increase in power was between -2 and 8% for causative genes that explained more than 2.5% of the genetic variance. In addition, inspection of the estimates of genomic window dominance variance allowed for inference about the magnitude of dominance at significant associations, which remains hidden in BayesC analysis. Mapping precision was not substantially improved by BayesD. CONCLUSIONS: BayesD improved power, but precision only slightly. Application of BayesD needs large datasets with genotypes and own performance records as phenotypes. Given the current efforts to establish cow reference populations in dairy cattle genomic selection schemes, such datasets are expected to be soon available, which will enable the application of BayesD for association mapping and genomic prediction purposes.


Asunto(s)
Teorema de Bayes , Estudio de Asociación del Genoma Completo , Modelos Genéticos , Carácter Cuantitativo Heredable , Algoritmos , Animales , Bovinos , Biología Computacional/métodos , Simulación por Computador , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
18.
Genet Sel Evol ; 49(1): 24, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28222685

RESUMEN

BACKGROUND: The availability of dense genotypes and whole-genome sequence variants from various sources offers the opportunity to compile large datasets consisting of tens of thousands of individuals with genotypes at millions of polymorphic sites that may enhance the power of genomic analyses. The imputation of missing genotypes ensures that all individuals have genotypes for a shared set of variants. RESULTS: We evaluated the accuracy of imputation from dense genotypes to whole-genome sequence variants in 249 Fleckvieh and 450 Holstein cattle using Minimac and FImpute. The sequence variants of a subset of the animals were reduced to the variants that were included on the Illumina BovineHD genotyping array and subsequently inferred in silico using either within- or multi-breed reference populations. The accuracy of imputation varied considerably across chromosomes and dropped at regions where the bovine genome contains segmental duplications. Depending on the imputation strategy, the correlation between imputed and true genotypes ranged from 0.898 to 0.952. The accuracy of imputation was higher with Minimac than FImpute particularly for variants with a low minor allele frequency. Using a multi-breed reference population increased the accuracy of imputation, particularly when FImpute was used to infer genotypes. When the sequence variants were imputed using Minimac, the true genotypes were more correlated to predicted allele dosages than best-guess genotypes. The computing costs to impute 23,256,743 sequence variants in 6958 animals were ten-fold higher with Minimac than FImpute. Association studies with imputed sequence variants revealed seven quantitative trait loci (QTL) for milk fat percentage. Two causal mutations in the DGAT1 and GHR genes were the most significantly associated variants at two QTL on chromosomes 14 and 20 when Minimac was used to infer genotypes. CONCLUSIONS: The population-based imputation of millions of sequence variants in large cohorts is computationally feasible and provides accurate genotypes. However, the accuracy of imputation is low in regions where the genome contains large segmental duplications or the coverage with array-derived single nucleotide polymorphisms is poor. Using a reference population that includes individuals from many breeds increases the accuracy of imputation particularly at low-frequency variants. Considering allele dosages rather than best-guess genotypes as explanatory variables is advantageous to detect causal mutations in association studies with imputed sequence variants.


Asunto(s)
Bovinos/genética , Estudio de Asociación del Genoma Completo/normas , Polimorfismo Genético , Programas Informáticos , Animales , Dosificación de Gen , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo/métodos , Genotipo
19.
Genet Sel Evol ; 49(1): 73, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28982372

RESUMEN

BACKGROUND: Cases of albinism have been reported in several species including cattle. So far, research has identified many genes that are involved in this eye-catching phenotype. Thus, when two paternal Braunvieh half-sibs with oculocutaneous albinism were detected on a private farm, we were interested in knowing whether their phenotype was caused by an already known gene/mutation. RESULTS: Analysis of genotyping data (50K) of the two albino individuals, their mothers and five other relatives identified a 47.61-Mb candidate haplotype on Bos taurus chromosome BTA20. Subsequent comparisons of the sequence of this haplotype with sequence data from four Braunvieh sires and the Aurochs genome identified two possible candidate causal mutations at positions 39,829,806 bp (G/A; R45Q) and 39,864,148 bp (C/T; T444I) that were absent in 1682 animals from various bovine breeds included in the 1000 bull genomes project. Both polymorphisms represent coding variants in the SLC45A2 gene, for which the human equivalent harbors numerous variants associated with oculocutaneous albinism type 4. We demonstrate an association of R45Q and T444I with the albino phenotype by targeted genotyping. CONCLUSIONS: Although the candidate gene SLC45A2 is known to be involved in albinism in different species, to date in cattle only mutations in the TYR and MITF genes were reported to be associated with albinism or albinism-like phenotypes. Thus, our study extends the list of genes that are associated with bovine albinism. However, further research and more samples from related animals are needed to elucidate if only one of these two single nucleotide polymorphisms or the combination of both is the actual causal variant.


Asunto(s)
Albinismo Oculocutáneo/genética , Bovinos/genética , Proteínas de Transporte de Membrana/genética , Polimorfismo de Nucleótido Simple , Animales , Cromosomas/genética , Mutación
20.
PLoS Genet ; 10(2): e1004148, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586189

RESUMEN

Human driven selection during domestication and subsequent breed formation has likely left detectable signatures within the genome of modern cattle. The elucidation of these signatures of selection is of interest from the perspective of evolutionary biology, and for identifying domestication-related genes that ultimately may help to further genetically improve this economically important animal. To this end, we employed a panel of more than 15 million autosomal SNPs identified from re-sequencing of 43 Fleckvieh animals. We mainly applied two somewhat complementary statistics, the integrated Haplotype Homozygosity Score (iHS) reflecting primarily ongoing selection, and the Composite of Likelihood Ratio (CLR) having the most power to detect completed selection after fixation of the advantageous allele. We find 106 candidate selection regions, many of which are harboring genes related to phenotypes relevant in domestication, such as coat coloring pattern, neurobehavioral functioning and sensory perception including KIT, MITF, MC1R, NRG4, Erbb4, TMEM132D and TAS2R16, among others. To further investigate the relationship between genes with signatures of selection and genes identified in QTL mapping studies, we use a sample of 3062 animals to perform four genome-wide association analyses using appearance traits, body size and somatic cell count. We show that regions associated with coat coloring significantly (P<0.0001) overlap with the candidate selection regions, suggesting that the selection signals we identify are associated with traits known to be affected by selection during domestication. Results also provide further evidence regarding the complexity of the genetics underlying coat coloring in cattle. This study illustrates the potential of population genetic approaches for identifying genomic regions affecting domestication-related phenotypes and further helps to identify specific regions targeted by selection during speciation, domestication and breed formation of cattle. We also show that Linkage Disequilibrium (LD) decays in cattle at a much faster rate than previously thought.


Asunto(s)
Animales Domésticos/genética , Genética de Población , Estudio de Asociación del Genoma Completo , Selección Genética , Animales , Cruzamiento , Bovinos , Haplotipos , Humanos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA