Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plant Dis ; 102(12): 2446-2452, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30252627

RESUMEN

ToxA, a necrotrophic effector originally identified from the tan spot fungus Pyrenophora tritici-repentis in 1987, was subsequently identified from Parastagonospora nodorum in 2006. More recently, the ToxA gene was identified in the spot blotch fungus Bipolaris sorokiniana in Australia. Here we show that the ToxA gene is also present in the B. sorokiniana population in the winter wheat region of southcentral Texas. Leaves from 'Duster' wheat showing strong necrotic lesions were collected in Castroville, TX. Fifteen single-spore isolates were collected from separate lesions, and 13 of them harbored the BsToxA gene and secreted ToxA in culture based on sensitivity of BG261, the differential line containing the dominant ToxA sensitivity gene, Tsn1. Four isolates harboring BsToxA and one deficient in BsToxA were used to infiltrate two wheat lines harboring Tsn1 as well as their corresponding tsn1 mutant lines. Culture filtrates of the isolate lacking BsToxA did not induce necrosis on any of the lines. Culture filtrates of the four BsToxA-containing isolates induced necrosis on the wild type (Tsn1) lines but not on the corresponding tsn1 mutant lines. Sensitivity to these culture filtrates also mapped to the previously identified location for Tsn1 in the winter wheat mapping population Arina × Forno. Inoculation of one of these ToxA-producing isolates on the same population showed that the Tsn1 locus accounted for 24.4% of the disease variation. All 13 isolates harbored the same BsToxA nucleotide sequence, which was identical to one of the two haplotypes previously identified in Australia. Sensitivity to ToxA is prevalent in popular hard winter wheat cultivars in the central and southcentral winter wheat regions of the United States, showing the potential of a selective advantage for B. sorokiniana isolates that harbor the ToxA gene.


Asunto(s)
Ascomicetos/genética , Proteínas Fúngicas/genética , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Factores de Virulencia/genética , Ascomicetos/citología , Ascomicetos/patogenicidad , Ascomicetos/fisiología , Mapeo Cromosómico , Haplotipos , Interacciones Huésped-Patógeno , Micotoxinas/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Alineación de Secuencia , Esporas Fúngicas , Texas , Triticum/genética
2.
Theor Appl Genet ; 130(1): 163-173, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27734097

RESUMEN

KEY MESSAGE: A CIho 5791 × Tifang recombinant inbred mapping population was developed and used to identify major dominant resistance genes on barley chromosomes 6H and 3H in CI5791 and on 3H in Tifang. The barley line CIho 5791 confers high levels of resistance to Pyrenophora teres f. teres, causal agent of net form net blotch (NFNB), with few documented isolates overcoming this resistance. Tifang barley also harbors resistance to P. teres f. teres which was previously shown to localize to barley chromosome 3H. A CIho 5791 × Tifang F6 recombinant inbred line (RIL) population was developed using single seed descent. The Illumina iSelect SNP platform was used to identify 2562 single nucleotide polymorphism (SNP) markers across the barley genome, resulting in seven linkage maps, one for each barley chromosome. The CIho 5791 × Tifang RIL population was evaluated for NFNB resistance using nine P. teres f. teres isolates collected globally. Tifang was resistant to four of the isolates tested whereas CIho 5791 was highly resistant to all nine isolates. QTL analysis indicated that the CIho 5791 resistance mapped to chromosome 6H whereas the Tifang resistance mapped to chromosome 3H. Additionally, CIho 5791 also harbored resistance to two Japanese isolates that mapped to a 3H region similar to that of Tifang. SNP markers and RILs harboring both 3H and 6H resistance will be useful in resistance breeding against NFNB.


Asunto(s)
Resistencia a la Enfermedad/genética , Hordeum/genética , Enfermedades de las Plantas/genética , Ascomicetos , Mapeo Cromosómico , Cromosomas de las Plantas , Ligamiento Genético , Marcadores Genéticos , Genotipo , Hordeum/microbiología , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
3.
Mol Plant Microbe Interact ; 28(5): 615-25, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25608181

RESUMEN

Parastagonospora nodorum is a necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) (formerly Stagonospora nodorum blotch) on wheat. P. nodorum produces necrotrophic effectors (NE) that are recognized by dominant host sensitivity gene products resulting in disease development. The NE-host interaction is critical to inducing NE-triggered susceptibility (NETS). To date, seven NE-host sensitivity gene interactions, following an inverse gene-for-gene model, have been identified in the P. nodorum-wheat pathosystem. Here, we used a wheat mapping population that segregated for sensitivity to two previously characterized interactions (SnTox1-Snn1 and SnTox3-Snn3-B1) to identify and characterize a new interaction involving the NE designated SnTox6 and the host sensitivity gene designated Snn6. SnTox6 is a small secreted protein that induces necrosis on wheat lines harboring Snn6. Sensitivity to SnTox6, conferred by Snn6, was light-dependent and was shown to underlie a major disease susceptibility quantitative trait locus (QTL). No other QTL were identified, even though the P. nodorum isolate used in this study harbored both the SnTox1 and SnTox3 genes. Reverse transcription-polymerase chain reaction showed that the expression of SnTox1 was not detectable, whereas SnTox3 was expressed and, yet, did not play a significant role in disease development. This work expands our knowledge of the wheat-P. nodorum interaction and further establishes this system as a model for necrotrophic specialist pathosystems.


Asunto(s)
Ascomicetos/genética , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Triticum/microbiología , Ascomicetos/fisiología , Mapeo Cromosómico , Susceptibilidad a Enfermedades , Proteínas Fúngicas/genética , Modelos Genéticos , Micotoxinas/genética , Micotoxinas/metabolismo , Proteínas de Plantas/genética , Mapeo de Interacción de Proteínas , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Triticum/metabolismo
4.
J Exp Bot ; 66(2): 513-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25504642

RESUMEN

In this review, we argue for a research initiative on wheat's responses to biotic stress. One goal is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to a variety of agents of biotic stress are integrated in an important crop. We propose gene-for-gene interactions as the focus of the research initiative. On the parasite's side is an Avirulence (Avr) gene that encodes one of the many effector proteins the parasite applies to the plant to assist with colonization. On the plant's side is a Resistance (R) gene that mediates a surveillance system that detects the Avr protein directly or indirectly and triggers effector-triggered plant immunity. Even though arthropods are responsible for a significant proportion of plant biotic stress, they have not been integrated into important models of plant immunity that come from plant pathology. A roadblock has been the absence of molecular evidence for arthropod Avr effectors. Thirty years after this evidence was discovered in a plant pathogen, there is now evidence for arthropods with the cloning of the Hessian fly's vH13 Avr gene. After reviewing the two models of plant immunity, we discuss how arthropods could be incorporated. We end by showing features that make wheat an interesting system for plant immunity, including 479 resistance genes known from agriculture that target viruses, bacteria, fungi, nematodes, insects, and mites. It is not likely that humans will be subsisting on Arabidopsis in the year 2050. It is time to start understanding how agricultural plants integrate responses to biotic stress.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/parasitología , Productos Agrícolas/fisiología , Productos Agrícolas/parasitología , Estrés Fisiológico , Triticum/fisiología , Triticum/parasitología , Animales , Dípteros/genética , Dípteros/fisiología , Interacciones Huésped-Parásitos/fisiología
5.
Phytopathology ; 105(4): 509-17, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25870926

RESUMEN

Spot form net blotch (SFNB) caused by Pyrenophora teres f. maculata is a major foliar disease of barley (Hordeum vulgare) worldwide. SFNB epidemics have recently been observed in major barley producing countries, suggesting that the local barley cultivars are not resistant and that virulence of the local pathogen populations may have changed. Here we attempt to identify sources of resistance effective against four diverse isolates of P. teres f. maculata collected from around the world. A total of 2,062 world barley core collection accessions were phenotyped using isolates of the pathogen collected in the United States (FGO), Australia (SG1), New Zealand (NZKF2), and Denmark (DEN 2.6). Isolate-specific susceptibility was identified in several of the barley accessions tested, indicating variability in both pathogen virulence and host resistance/susceptibility. Collectively, only 15 barley accessions were resistant across all isolates tested. These resistant accessions will be used to generate mapping populations and for germplasm development. Future research will involve the characterization of host resistance, pathogen virulence, and the host-pathogen interaction associated with SFNB of barley.


Asunto(s)
Ascomicetos/patogenicidad , Susceptibilidad a Enfermedades , Hordeum/genética , Enfermedades de las Plantas/inmunología , Ascomicetos/fisiología , Australia , Dinamarca , Genotipo , Hordeum/inmunología , Hordeum/microbiología , Interacciones Huésped-Patógeno , Nueva Zelanda , Fenotipo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Especificidad de la Especie , Estados Unidos , Virulencia
6.
Phytopathology ; 102(5): 498-505, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22494247

RESUMEN

Stagonospora nodorum blotch (SNB), caused by the necrotrophic fungus Stagonospora nodorum (teleomorph: Phaeosphaeria nodorum), is among the most common diseases of winter wheat in the United States. New opportunities in resistance breeding have arisen from the recent discovery of several necrotrophic effectors (NEs, also known as host-selective toxins) produced by S. nodorum, along with their corresponding host sensitivity (Snn) genes. Thirty-nine isolates of S. nodorum collected from wheat debris or grain from seven states in the southeastern United States were used to investigate the production of NEs in the region. Twenty-nine cultivars with varying levels of resistance to SNB, representing 10 eastern-U.S. breeding programs, were infiltrated with culture filtrates from the S. nodorum isolates in a randomized complete block design. Three single-NE Pichia pastoris controls, two S. nodorum isolate controls, and six Snn-differential wheat controls were also used. Cultivar-isolate interactions were visually evaluated for sensitivity at 7 days after infiltration. Production of NEs was detected in isolates originating in each sampled state except Maryland. Of the 39 isolates, 17 produced NEs different from those previously characterized in the upper Great Plains region. These novel NEs likely correspond to unidentified Snn genes in Southeastern wheat cultivars, because NEs are thought to arise under selection pressure from genes for resistance to biotrophic pathogens of wheat cultivars that differ by geographic region. Only 3, 0, and 23% of the 39 isolates produced SnToxA, SnTox1, and SnTox3, respectively, by the culture-filtrate test. A Southern dot-blot test showed that 15, 74, and 39% of the isolates carried the genes for those NEs, respectively; those percentages were lower than those found previously in larger international samples. Only two cultivars appeared to contain known Snn genes, although half of the cultivars displayed sensitivity to culture filtrates containing unknown NEs. Effector sensitivity was more frequent in SNB-susceptible cultivars than in moderately resistant (MR) cultivars (P = 0.008), although some susceptible cultivars did not exhibit sensitivity to NEs produced by isolates in this study and some MR cultivars were sensitive to NEs of multiple isolates. Our results suggest that NE sensitivities influence but may not be the only determinant of cultivar resistance to S. nodorum. Specific knowledge of NE and Snn gene frequencies in this region can be used by wheat breeding programs to improve SNB resistance.


Asunto(s)
Ascomicetos/genética , Micotoxinas/genética , Enfermedades de las Plantas/microbiología , Semillas/genética , Triticum/genética , Ascomicetos/metabolismo , Mapeo Cromosómico , Análisis por Conglomerados , Susceptibilidad a Enfermedades , Genes Bacterianos/genética , Genes de Plantas/genética , Interacciones Huésped-Patógeno , Micotoxinas/metabolismo , Micotoxinas/farmacología , Hojas de la Planta/microbiología , Distribución Aleatoria , Semillas/efectos de los fármacos , Semillas/microbiología , Sudeste de Estados Unidos , Triticum/efectos de los fármacos , Triticum/microbiología
7.
Phytopathology ; 102(5): 539-46, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22494251

RESUMEN

A Pyrenophora teres f. teres population in North Dakota was analyzed for virulence variation and genetic diversity using 75 monospore isolates that were collected across a 4-year period (2004 to 2007) from two North Dakota State University agricultural experiment stations at Fargo and Langdon. Pathogenicity tests by inoculation onto 22 barley differential lines at seedling stage revealed 49 pathotypes, indicating a wide range of pathogenic diversity. Two-way analysis of variance of disease ratings revealed a significant difference in the virulence among isolates and in the resistance among barley lines, as well as in the interactions between the two. 'CI5791', 'Algerian', and 'Heartland' were three barley lines showing a high level of seedling resistance to all North Dakota isolates tested; however, many previously reported resistance genes have been overcome. Forty multilocus genotypes were identified from this set of isolates by genotyping at 13 simple-sequence repeat loci. High percentages of clonal cultures were detected in the samplings from 2005 and 2007 in Fargo and 2005 in Langdon. Using a clone-corrected sample set, the mean gene diversity (h) was estimated to be 0.58, approximately the same for both locations. The calculated Wright's F(ST) value is small (0.11) but was significantly >0, indicating a significant differentiation between the Fargo and Langdon populations. In the gametic disequilibrium test, only 3 of 78 possible pairwise comparisons over all isolates showed significant (P < 0.05) nonrandom association, suggesting a random mating mode. Our results suggest that the populations from the two locations are derived from a common source and undergo frequent recombination. This research provides important information for barley breeders regarding development and deployment of cultivars with resistance to net form net blotch in this region.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Estructuras Genéticas/genética , Variación Genética/genética , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Genes del Tipo Sexual de los Hongos/genética , Marcadores Genéticos/genética , Genética de Población , Genotipo , North Dakota , Plantones/microbiología , Virulencia/genética
8.
Plant Dis ; 94(4): 480, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30754499

RESUMEN

Net blotch of barley (Hordeum vulgare L.) caused by the fungus Pyrenophora teres (anamorph Drechslera teres) is found in two forms, net form net blotch (NFNB) and spot form net blotch (SFNB). When inoculated on susceptible varieties, P. teres f. teres produces lesions with a characteristic net-like pattern surrounded by necrosis or chlorosis (NFNB), whereas P. teres f. maculata produces lesions consisting of spots surrounded by necrosis or chlorosis (SFNB). Recently, epidemics of SFNB have occurred throughout the world (4). Currently, net blotch is a significant foliar disease of barley in the North Dakota-Northwestern Minnesota agricultural region, a leading barley-production area. Diseased barley leaf tissue was collected annually from 2004 to 2008 in Fargo and Langdon, ND. Diseased leaves were incubated to promote sporulation. Ten single-spore isolates of P. teres collected from each location each year were tested for virulence by inoculation on 20 commonly used barley net blotch differential lines. Among the 100 isolates collected, one isolate collected in Fargo in 2006 (FGOH06Pt-8) and one isolate collected in Langdon in 2008 (LDNH08Pt-4) were identified as P. teres f. maculata due to their induction of spot-type lesions across the differential set. Conidial morphology of the two isolates was similar to P. teres f. teres isolates. A pathogenicity test of all isolates was performed on regional barley cvs. Tradition, Robust, and Lacey as well as barley lines Rika and Kombar (1) as previously described (3). The net form isolate 0-1 and spot form isolate DEN2.6 (obtained from B. Steffenson, University of Minnesota) were used as controls. The P. teres f. teres isolate 0-1 produced typical net type symptoms on all barley lines except the resistant line Rika, in which only small, dark spots were observed. DEN2.6 produced pin-point spot-like lesions with an extensive yellow halo on Robust, Lacey, Rika, and Kombar, but without chlorosis on Tradition. The two newly identified isolates induced elliptical spot-type lesions measuring 3 × 6 mm, larger than those produced by P. teres f. maculata isolate DEN 2.6, suggesting a higher level of virulence. We constructed a neighbor-joining phylogenetic tree using ClustalW2 ( http://www.ebi.ac.uk/ ) based on sequence identity of the internal transcribed spacer (ITS) region from 0-1 (GenBank No. GU014819), DEN2.6 (GenBank No. GU014820), FGOH06Pt-8 (GenBank No. GU014821), and LDNH08Pt-4 (GenBank No. GU014822) as well as P. teres f. maculata, P. teres f. teres, and P. tritici-repentis (causal agent of tan spot of wheat) accessions obtained from GenBank (2). All P. teres isolates clustered together and were clearly separated from the P. tritici-repentis cluster. Isolates FGOH06Pt-8 and LDNH08Pt-4 had identical ITS sequences and differed from DEN2.6 by only a single nucleotide. To our knowledge, this is the first report of P. teres f. maculata in North Dakota. Resistance to SFNB should now be considered in local barley breeding programs and cultivar releases. Reference: (1) M. Abu Qamar. Theor. Appl. Genet. 117:1261, 2008. (2) R. M. Andrie et al. Fungal Genet. Biol. 45:363, 2008. (3) Z. Lai et al. Fungal Genet. Biol. 44:323, 2007. (4) M. S. McLean et al. Crop Pasture Sci. 60:303, 2009.

9.
Theor Appl Genet ; 119(2): 263-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19396420

RESUMEN

Pyramiding of genes that confer partial resistance is a method for developing wheat (Triticum aestivum L.) cultivars with durable resistance to leaf rust caused by Puccinia triticina. In this research, a doubled haploid population derived from the cross between the synthetic hexaploid wheat (SHW) (xAegilotriticum spp.) line TA4152-60 and the North Dakota breeding line ND495 was used for identifying genes conferring partial resistance to leaf rust in both the adult plant and seedling stages. Five QTLs located on chromosome arms 3AL, 3BL, 4DL, 5BL and 6BL were associated with adult plant resistance with the latter four representing novel leaf rust resistance QTLs. Resistance effects of the 4DL QTL were contributed by ND495 and the effects of the other QTLs were contributed by the SHW line. The QTL on chromosome arm 3AL had large effects and also conferred seedling resistance to leaf rust races MJBJ, TDBG and MFPS. The other major QTL, which was on chromosome arm 3BL, conferred seedling resistance to race MFPS and was involved in a significant interaction with a locus on chromosome arm 5DS. The QTLs and the associated molecular markers identified in this research can be used to develop wheat cultivars with potentially durable leaf rust resistance.


Asunto(s)
Haploidia , Inmunidad Innata/genética , Enfermedades de las Plantas/inmunología , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo/genética , Plantones/genética , Triticum/genética , Basidiomycota/fisiología , Marcadores Genéticos , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Plantones/microbiología , Triticum/microbiología
10.
Phytopathology ; 99(3): 282-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19203281

RESUMEN

Puccinia graminis f. sp. tritici is the causal agent of stem rust disease in wheat. The rust fungus has caused devastating disease epidemics throughout history and is still posing a potential threat to wheat production in some regions of the world due to the appearance of new races. To develop microsatellite or simple sequence repeat (SSR) markers for use in population genetics studies, a total of 60,579 expressed sequence tag (EST) sequences (reads) generated from P. graminis f. sp. tritici were screened for tandemly repeated di- and tri-nucleotide units using a bioinformatics approach and 708 unisequences containing putative SSR loci with six or more repeat units were identified. Flanking primers were designed for 384 unique SSR loci, which mapped to different locations of the draft genome sequence of the fungus. Of the 384 primer pairs tested, 72 EST-SSR markers were eventually developed, which showed polymorphism among 19 isolates of P. graminis f. sp. tritici and 4 isolates of P. graminis f. sp. secalis evaluated. Thirty-two of the SSR loci were also evaluated in three other rust fungi (P. triticina, P. hordei, and P. coronata f. sp. hordei) for cross-species transferability. These SSR markers derived from ESTs will be useful for characterization of population structures and for gene mapping in P. graminis.


Asunto(s)
Basidiomycota/genética , Etiquetas de Secuencia Expresada , Repeticiones de Microsatélite , Triticum/microbiología , ADN de Hongos/genética , Marcadores Genéticos , Técnicas de Amplificación de Ácido Nucleico , Enfermedades de las Plantas/microbiología , Polimorfismo Genético
11.
Plant Dis ; 92(8): 1229-1236, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30769488

RESUMEN

Tan spot and Stagonospora nodorum blotch (SNB), caused by Pyrenophora tritici-repentis and Stagonospora nodorum, respectively, are two destructive foliar diseases of wheat, causing significant yield reduction worldwide. The objective of this study was to evaluate 172 accessions of wild emmer wheat (Triticum dicoccoides) for seedling resistance to tan spot and SNB. All accessions were inoculated with P. tritici-repentis race 1 and a mixture of three diverse isolates of S. nodorum, respectively. The accessions were also evaluated for sensitivity to host-selective toxins (HSTs), including ToxA produced by both S. nodorum and P. tritici-repentis and culture filtrate produced by S. nodorum. A total of 34 accessions were resistant to tan spot, and 136 accessions were resistant to SNB. Among these accessions, 31 were resistant to both diseases. Significant correlations between HST insensitivity and disease resistance were observed. Our results showed that T. dicoccoides is a good genetic source of resistance to tan spot and SNB in wheat.

12.
Plant Dis ; 92(1): 150-157, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30786381

RESUMEN

Tan spot (caused by Pyrenophora tritici-repentis) and Stagonospora nodorum blotch (SNB) (caused by Stagonospora nodorum) are destructive fungal diseases of wheat (Triticum aestivum) throughout the world. Host plant resistance is thought to be an efficient and economical method of control. The objective of the present study was to identify novel sources of tan spot and SNB resistance in wheat genotypes derived from the crosses between wheat and alien species. Evaluations were conducted at the seedling stage in a growth chamber with 100% relative humidity. For each genotype, three replications were used for each disease. Among the 199 wheat-alien species derivatives evaluated, 65 exhibited resistance to tan spot and 30 showed resistance to SNB similar to BR34, a Brazilian wheat line used as the resistant control. Eleven derivatives were resistant to both diseases. Reactions of the derivatives and their respective wheat parents to tan spot and SNB suggest that resistance genes in the derivatives are derived from alien species. These derivatives can serve as desirable bridges for introgression of resistance genes from alien species to cultivated wheat, and could contribute novel and effective tan spot and SNB resistance to wheat breeding.

13.
Phytopathology ; 97(5): 592-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-18943578

RESUMEN

ABSTRACT Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most destructive diseases of durum (Triticum turgidum sp. durum) and common wheat (T. aestivum). Promising sources of FHB resistance have been identified among common (hexaploid) wheats, but the same is not true for durum (tetraploid) wheats. A previous study indicated that chromosome 7A from T. turgidum sp. dicoccoides accession PI478742 contributed significant levels of resistance to FHB. The objectives of this research were to develop a genetic linkage map of chromosome 7A in a population of 118 recombinant inbred lines derived from a cross between the durum cv. Langdon (LDN) and a disomic LDN-T. turgidum sp. dicoccoides PI478742 chromosome 7A substitution line [LDN-DIC 7A(742)], and identify a putative FHB resistance quantitative trait locus (QTL) on chromosome 7A derived from LDN-DIC 7A(742). The population was evaluated for type II FHB resistance in three greenhouse environments. Interval regression analysis indicated that a single QTL designated Qfhs.fcu-7AL explained 19% of the phenotypic variation and spanned an interval of 39.6 cM. Comparisons between the genetic map and a previously constructed physical map of chromosome 7A indicated that Qfhs.fcu-7AL is located in the proximal region of the long arm. This is only the second FHB QTL to be identified in a tetraploid source, and it may be useful to combine it with the QTL Qfhs.ndsu-3AS in order to develop durum wheat germ plasm and cultivars with higher levels of FHB resistance.

14.
Phytopathology ; 95(10): 1144-50, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18943466

RESUMEN

ABSTRACT The work presented here is the first major study to analyze the genetic diversity within the worldwide population of the economically important wheat pathogen Pyrenophora tritici-repentis. The genetic structure of field populations of P. tritici-repentis was determined using amplified fragment length polymorphism markers along with sequence data from the internal transcribed spacer region of the ribosomal DNA. Ninetyseven fungal isolates were collected from naturally infected wheat and wild grass species. The collection of 97 P. tritici-repentis isolates included races 1, 2, 3, 4, 5, ND7, and ND8 and was collected from North America, South America, and Europe. Results show no genetic grouping of fungal races nor do results indicate grouping based on geographic location indicating that the population is preferentially outcrossing in nature and that the introduction and spread of this population is either relatively recent or that there has been a constant worldwide flow of this fungus possibly by seed movement between continents.

15.
Phytopathology ; 92(1): 38-42, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18944137

RESUMEN

ABSTRACT The host-selective toxin Ptr ToxA is produced by races 1 and 2 of Pyrenophora tritici-repentis, causal agent of tan spot of wheat. Ptr ToxA has been causally associated with pathogenicity by the race 2 phenotype in this system. However, the role of toxin in disease caused by race 1, the most prevalent form of the fungus in the central and northern Great Plains of North America, has not been rigorously investigated. Three independent wheat lines harboring mutations for insensitivity to Ptr ToxA were derived from ethylmethane sulfonate treatment of the hard red spring wheat cv. Kulm, possessing the single dominant gene for toxin sensitivity. Each of the three mutants was insensitive to Ptr ToxA in bioassays based on necrosis development and electrolyte leakage. Each mutant was crossed to each of the other mutants and to the wild-type Kulm. Segregation data indicate that each mutant line harbors a single recessive mutation for toxin insensitivity that maps to or near the same locus, possibly the toxin-sensitivity gene. Each toxin-insensitive mutant line was susceptible to two isolates of race 1 of P. tritici-repentis. F(2) and F(3) generations derived from crosses between Kulm and each mutant segregated for toxin reaction. However, segregation for fungal reaction was not evident, and all F(3) families were tan spot susceptible regardless of toxin reaction. Host insensitivity to Ptr ToxA is not necessarily equivalent to resistance to race 1. Ptr ToxA should not be used alone as a proxy for fungal inoculations by breeding programs aimed at developing tan spot-resistant wheat.

16.
Phytopathology ; 93(4): 397-401, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18944353

RESUMEN

ABSTRACT Pyrenophora tritici-repentis race 2 produces Ptr ToxA, a host-selective toxin previously described as a pathogenicity factor for tan spot on wheat. The objective of this research was to evaluate the role of host sensitivity to toxin, conditioned by a single dominant gene on chromosome 5BL, in the disease development by race 2. An F(2)-derived F(6) recombinant inbred population of 108 wheat lines, produced from crosses of toxin-sensitive, disease-susceptible cv. Kulm with the toxin-insensitive, disease-resistant cv. Erik segregated 1:1 for toxin reaction. However, the population was skewed toward resistance to race 2 of the fungus. Toxin reaction accounted for 24.4% of the genetic variance for disease. Heritability estimates suggested the presence of four to five genes that influence disease reaction in the population. Toxin-insensitive mutants, previously derived Kulm, were susceptible to race 2, although disease developed more slowly on the mutants than it did on the wild-type Kulm. The data indicate that sensitivity to Ptr ToxA influences disease severity in some host genotypes without defining susceptibility.

17.
Phytopathology ; 94(10): 1056-60, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18943793

RESUMEN

ABSTRACT A toxin, designated SnTox1, was partially purified from culture filtrates of isolate Sn2000 of Stagonospora nodorum, the causal agent of wheat leaf and glume blotch. The toxin showed selective action on several different wheat genotypes, indicating that it is a host-selective toxin (HST). The toxic activity was reduced when incubated at 50 degrees C and activity was eliminated when treated with proteinase K, suggesting that the HST is a protein. The synthetic hexaploid wheat W-7984 and hard red spring wheat Opata 85, the parents of the International Triticeae Mapping Initiative (ITMI) mapping population, were found to be sensitive and insensitive, respectively, to SnTox1. The ITMI mapping population was evaluated for toxin reaction and used to map the gene conditioning sensitivity. This gene, designated Snn1, mapped to the distal end of the short arm of chromosome 1B. The wheat cv. Chinese Spring (CS) and all CS nullisomic-tetrasomic lines were sensitive to the toxin, with the exception of N1BT1D. Insensitivity also was observed when the 1B chromosome of CS was substituted with the 1B chromosome of an insensitive accession of Triticum dicoccoides. In addition, a series of 1BS chromosome deletion lines were used to physically localize the sensitivity gene. Physical mapping indicated that Snn1 lies within a major gene-rich region on 1BS. This is the first report identifying a putative proteinaceous HST from S. nodorum and the chromosomal location of a host gene conferring sensitivity.

18.
Phytopathology ; 94(10): 1061-7, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18943794

RESUMEN

ABSTRACT Stagonospora nodorum leaf blotch is an economically important foliar disease in the major wheat-growing areas of the world. In related work, we identified a host-selective toxin (HST) produced by the S. nodorum isolate Sn2000 and determined the chromosomal location of the host gene (Snn1) conditioning sensitivity to the toxin using the International Triticeae Mapping Initiative mapping population and cytogenetic stocks. In this study, we used the same plant materials to identify quantitative trait loci (QTL) associated with resistance to fungal inoculations of Sn2000 and investigate the role of the toxin in causing disease. Disease reactions were scored at 5, 7, and 10 days postinoculation to evaluate changes in the degree of effectiveness of individual QTL. A major QTL was identified on the short arm of chromosome 1B, which coincided with the snn1 toxin-insensitivity gene. This locus explained 58% of the phenotypic variation for the 5-day reading but decreased to 27% for the 10-day reading, indicating that the toxin is most effective in the early stages of the interaction. In addition, relatively minor QTL were identified on chromosomes 3AS, 3DL, 4AL, 4BL, 5DL, 6AL, and 7BL, but not all minor QTL were significant for all readings and their effects varied. Multiple regression models explained from 68% of the phenotypic variation for the 5-day reading to 36% for the 10-day reading. The Chinese Spring nullisomic 1B tetrasomic 1D line and the Chinese Spring-Triticum dicoccoides disomic 1B chromosome substitution line, which were insensitive to SnTox1, were more resistant to the fungus than the rest of the nullisomictetrasomic and disomic chromosome substitution lines. Our results indicate that the toxin produced by isolate Sn2000 is a major virulence factor.

19.
Theor Appl Genet ; 117(6): 873-81, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18575834

RESUMEN

Tan spot, caused by Pyrenophora tritici-repentis, is a destructive foliar disease of wheat causing significant yield reduction in major wheat growing areas throughout the world. The objective of this study was to identify quantitative trait loci (QTL) conferring resistance to tan spot in the synthetic hexaploid wheat (SHW) line TA4152-60. A doubled haploid (DH) mapping population derived from TA4152-60 x ND495 was inoculated with conidia produced by isolates of each of four virulent races of P. tritici-repentis found in North America. QTL analysis revealed a total of five genomic regions significantly associated with tan spot resistance, all of which were contributed by the SHW line. Among them, two novel QTLs located on chromosome arms 2AS and 5BL conferred resistance to all isolates tested. Another novel QTL on chromosome arm 5AL conferred resistance to isolates of races 1, 2 and 5, and a QTL specific to a race 3 isolate was detected on chromosome arm 4AL. None of these QTLs corresponded to known host selective toxin (HST) insensitivity loci, but a second QTL on chromosome arm 5BL conferred resistance to the Ptr ToxA producing isolates of races 1 and 2 and corresponded to the Tsn1 (Ptr ToxA sensitivity) locus. This indicates that the wheat-P. tritici-repentis pathosystem is much more complex than previously thought and that selecting for toxin insensitivity alone will not necessarily lead to tan spot resistance. The markers associated with the QTLs identified in this work will be useful for deploying the SHW line as a tan spot resistance source in wheat breeding.


Asunto(s)
Ascomicetos/patogenicidad , Genes de Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Cruzamiento , Mapeo Cromosómico , Resistencia a Medicamentos/genética , Interacciones Huésped-Patógeno/genética , Micotoxinas/toxicidad , Poliploidía , Sitios de Carácter Cuantitativo , Triticum/efectos de los fármacos , Virulencia
20.
Theor Appl Genet ; 117(8): 1261-70, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18712341

RESUMEN

Net type net blotch (NTNB), caused by Pyrenophora teres f. teres Drechs., is prevalent in barley growing regions worldwide. A population of 118 doubled haploid (DH) lines developed from a cross between barley cultivars 'Rika' and 'Kombar' were used to evaluate resistance to NTNB due to their differential reaction to various isolates of P. teres f. teres. Rika was resistant to P. teres f. teres isolate 15A and susceptible to isolate 6A. Conversely, Kombar was resistant to 6A, but susceptible to 15A. A progeny isolate of a 15A x 6A cross identified as 15A x 6A#4 was virulent on both parental lines. The Rika/Kombar (RK) DH population was evaluated for disease reactions to the three isolates. Isolate 15A induced a resistant:susceptible ratio of 78:40 (R:S) whereas isolate 6A induced a resistant:susceptible ratio of 40:78. All but two lines had opposite disease reactions indicating two major resistance genes linked in repulsion. Progeny isolate 15A x 6A#4 showed a resistant:susceptible ratio of 1:117 with the one resistant line also being the single line that was resistant to both 15A and 6A. An RK F(2) population segregated in a 1:3 (R:S) ratio for both 15A and 6A indicating that resistance is recessive. Molecular markers were used to identify a region on chromosome 6H that harbors the two NTNB resistance genes. This work shows that multiple NTNB resistance genes exist at the locus on chromosome 6H, and the recombinant DH line harboring the resistance alleles from both parents will be useful for the development of NTNB-resistant barley germplasm.


Asunto(s)
Cromosomas de las Plantas , Hordeum/genética , Enfermedades de las Plantas/genética , Ascomicetos/patogenicidad , Mapeo Cromosómico , Cruzamientos Genéticos , ADN de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Hordeum/microbiología , Inmunidad Innata/genética , Repeticiones de Microsatélite , Enfermedades de las Plantas/microbiología , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA