Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 288(1965): 20212101, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34905714

RESUMEN

Honeybees use propolis collected from plants for coating the inner walls of their nest. This substance is also used as a natural antibiotic against microbial pathogens, similarly to many other animals exploiting natural products for self-medication. We carried out chemical analyses and laboratory bioassays to test if honeybees use propolis for social medication against their major ectoparasite: Varroa destructor. We found that propolis is applied to brood cells where it can affect the reproducing parasites, with a positive effect on honeybees and a potential impact on Varroa population. We conclude that propolis can be regarded as a natural pesticide used by the honeybee to limit a dangerous parasite. These findings significantly enlarge our understanding of behavioural immunity in animals and may have important implications for the management of the most important threat to honeybees worldwide.


Asunto(s)
Ascomicetos , Plaguicidas , Própolis , Varroidae , Animales , Abejas , Plaguicidas/farmacología , Própolis/química , Própolis/farmacología
2.
Proc Biol Sci ; 286(1901): 20190331, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-30991929

RESUMEN

The association between the deformed wing virus and the parasitic mite Varroa destructor has been identified as a major cause of worldwide honeybee colony losses. The mite acts as a vector of the viral pathogen and can trigger its replication in infected bees. However, the mechanistic details underlying this tripartite interaction are still poorly defined, and, particularly, the causes of viral proliferation in mite-infested bees. Here, we develop and test a novel hypothesis that mite feeding destabilizes viral immune control through the removal of both virus and immune effectors, triggering uncontrolled viral replication. Our hypothesis is grounded on the predator-prey theory developed by Volterra, which predicts prey proliferation when both predators and preys are constantly removed from the system. Consistent with this hypothesis, we show that the experimental removal of increasing volumes of haemolymph from individual bees results in increasing viral densities. By contrast, we do not find consistent support for alternative proposed mechanisms of viral expansion via mite immune suppression or within-host viral evolution. Our results suggest that haemolymph removal plays an important role in the enhanced pathogen virulence observed in the presence of feeding Varroa mites. Overall, these results provide a new model for the mechanisms driving pathogen-parasite interactions in bees, which ultimately underpin honeybee health decline and colony losses.


Asunto(s)
Abejas/inmunología , Hemolinfa/fisiología , Interacciones Huésped-Parásitos , Virus ARN/fisiología , Varroidae/fisiología , Replicación Viral , Animales , Abejas/crecimiento & desarrollo , Abejas/parasitología , Abejas/virología , Conducta Alimentaria , Larva/crecimiento & desarrollo , Larva/inmunología , Larva/parasitología , Larva/virología , Pupa/crecimiento & desarrollo , Pupa/inmunología , Pupa/parasitología , Pupa/virología , Varroidae/crecimiento & desarrollo
3.
Sci Total Environ ; 948: 174892, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39034005

RESUMEN

The registration of novel pesticides that are subsequently banned because of their unexpected negative effects on non-target species can have a huge environmental impact. Therefore, the pre-emptive evaluation of the potential effects of new compounds is essential. To this aim both lethal and sublethal effects should be assessed in a realistic scenario including the other stressors that can interact with pesticides. However, laboratory studies addressing such interactive effects are rare, while standardized laboratory-based protocols focus on lethal effects and not on sub-lethal effects. We propose to assess both lethal and sublethal effects in a multifactorial context including the other stressors affecting the non-target species. We tested this approach by studying the impact on honey bees of the insecticide sulfoxaflor in combination with a common parasite, a sub-optimal temperature and food deprivation. We studied the survival and the transcriptome of honey bees, to assess both the lethal and the potential sublethal effects of the insecticide, respectively. With this method we show that a field realistic concentration of sulfoxaflor in food does not affect the survival of honey bees; however, the significant impact on some key genes indicates that sublethal effects are possible in a realistically complex scenario. Moreover, our results demonstrate the feasibility and reliability of a novel approach to hazard assessment considering the interactive effects of pesticides. We anticipate our approach to be a starting point for a paradigm shift in toxicology: from an unifactorial, mortality-centered assessment to a multifactorial, comprehensive approach. This is something of the utmost importance to preserve pollination, thus contributing to the sustainability of our food production system.

4.
Insects ; 15(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786911

RESUMEN

Inter-row management in vineyards can influence the abundance of grapevine pests and their natural enemies. In 2013-2015, in a vineyard in northeastern Italy, the influence of two vineyard inter-row management strategies (i.e., alternate mowing, AM, and periodical tillage, PT) on the population dynamics of grapevine leafhoppers Hebata vitis and Zygina rhamni and their natural enemies, the mymarid Anagrus atomus and spiders (Araneae), and other hymenopteran parasitoids, were studied with different survey approaches. The infestations of both leafhoppers were lower in AM than PT due to the reduced leafhopper oviposition and higher nymph mortality in AM. This occurred although leafhopper egg parasitization by A. atomus was greater in PT than AM according to a density-dependent relationship with the leafhopper egg amount. Hymenopteran parasitoids other than A. atomus were the most abundant in AM, probably due to the higher availability of nectar and pollen than in PM. The significantly higher population densities of hunting spiders in AM than PT can be associated with the higher predation of leafhopper nymphs. Therefore, the study demonstrated that the alternate mowing of vineyard inter-rows enhances the abundance of natural enemies, such as spiders and hymenopteran parasitoids, and can contribute to grapevine leafhopper pest control.

5.
PLoS One ; 18(7): e0288821, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37459342

RESUMEN

Host age at parasites' exposure is often neglected in studies on host-parasite interactions despite the important implications for epidemiology. Here we compared the impact of the parasitic mite Varroa destructor, and the associated pathogenic virus DWV on different life stages of their host, the western honey bee Apis mellifera. The pre-imaginal stages of the honey bee proved to be more susceptible to mite parasitization and viral infection than adults. The higher viral load in mite-infested bees and DWV genotype do not appear to be the drivers of the observed difference which, instead, seems to be related to the immune-competence of the host. These results support the existence of a trade-off between immunity and growth, making the pupa, which is involved in the highly energy-demanding process of metamorphosis, more susceptible to parasites and pathogens. This may have important implications for the evolution of the parasite's virulence and in turn for honey bee health. Our results highlight the important role of host's age and life stage at exposure in epidemiological modelling. Furthermore, our study could unravel new aspects of the complex honey bee-Varroa relationship to be addressed for a sustainable management of this parasite.


Asunto(s)
Varroidae , Virosis , Animales , Abejas , Varroidae/fisiología , Interacciones Huésped-Parásitos
6.
J Insect Physiol ; 151: 104571, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37832840

RESUMEN

Several concurrent stress factors can impact honey bee health and colony stability. Although a satisfactory knowledge of the effect of almost every single factor is now available, a mechanistic understanding of the many possible interactions between stressors is still largely lacking. Here we studied, both at the individual and colony level, how honey bees are affected by concurrent exposure to cold and parasitic infection. We found that the parasitic mite Varroa destructor, further than increasing the natural mortality of bees, can induce an anorexia that reduces their capacity to thermoregulate and thus react to sub-optimal temperatures. This, in turn, could affect the collective response of the bee colony to cold temperatures aggravating the effect already observed at the individual level. These results highlight the important role that biotic factors can have by shaping the response to abiotic factors and the strategic need to consider the potential interactions between stressors at all levels of the biological organization to better understand their impact.


Asunto(s)
Varroidae , Abejas , Animales , Varroidae/fisiología , Frío
7.
Front Insect Sci ; 2: 864238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38468781

RESUMEN

Honey bees collect nectar and pollen to fulfill their nutritional demands. In particular, pollen can influence longevity, the development of hypopharyngeal glands, and immune-competence of bees. Pollen can also mitigate the deleterious effects caused by the parasitic mite Varroa destructor and related deformed wing virus (DWV) infections. It has been shown that V. destructor accelerates the physiological and behavioral maturation of honey bees by influencing the interaction between two core physiological factors, Vitellogenin and juvenile hormone. In this study, we test the hypothesis that the beneficial effects of pollen on Varroa-infested bees are related to the hormonal control underpinning behavioral maturation. By analyzing the expression of genes associated to behavioral maturation in pollen-fed mite-infested bees, we show that treatment with pollen increases the lifespan of mite-infested bees by reversing the faster maturation induced by the parasite at the gene expression level. As expected, from the different immune-competence of nurse and forager bees, the lifespan extension triggered by pollen is also correlated with a positive influence of antimicrobial peptide gene expression and DWV load, further reinforcing the beneficial effect of pollen. This study lay the groundwork for future analyses of the underlying evolutionary processes and applications to improve bee health.

8.
Nat Commun ; 13(1): 5720, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175425

RESUMEN

While there is widespread concern regarding the impact of pesticides on honey bees, well-replicated field experiments, to date, have failed to provide clear insights on pesticide effects. Here, we adopt a systems biology approach to gain insights into the web of interactions amongst the factors influencing honey bee health. We put the focus on the properties of the system that depend upon its architecture and not on the strength, often unknown, of each single interaction. Then we test in vivo, on caged honey bees, the predictions derived from this modelling analysis. We show that the impact of toxic compounds on honey bee health can be shaped by the concurrent stressors affecting bees. We demonstrate that the immune-suppressive capacity of the widespread pathogen of bees, deformed wing virus, can introduce a critical positive feed-back loop in the system causing bistability, i.e., two stable equilibria. Therefore, honey bees under similar initial conditions can experience different consequences when exposed to the same stressor, including prolonged survival or premature death. The latter can generate an increased vulnerability of the hive to dwindling and collapse. Our conclusions reconcile contrasting field-testing outcomes and have important implications for the application of field studies to complex systems.


Asunto(s)
Plaguicidas , Animales , Abejas , Terapia de Inmunosupresión , Mortalidad Prematura , Plaguicidas/toxicidad , Solución de Problemas , Virus ARN
9.
Nat Commun ; 11(1): 5887, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208729

RESUMEN

The neonicotinoid Clothianidin has a negative impact on NF-κB signaling and on immune responses controlled by this transcription factor, which can boost the proliferation of honey bee parasites and pathogens. This effect has been well documented for the replication of deformed wing virus (DWV) induced by Clothianidin in honey bees bearing an asymptomatic infection. Here, we conduct infestation experiments of treated bees to show that the immune-suppression exerted by Clothianidin is associated with an enhanced fertility of the parasitic mite Varroa destructor, as a possible consequence of a higher feeding efficiency. A conceptual model is proposed to describe the synergistic interactions among different stress agents acting on honey bees.


Asunto(s)
Abejas/efectos de los fármacos , Abejas/inmunología , Guanidinas/toxicidad , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Tiazoles/toxicidad , Varroidae/crecimiento & desarrollo , Animales , Abejas/parasitología , Interacciones Huésped-Parásitos , Varroidae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA