Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 10(6): 3759-3774, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38800901

RESUMEN

Conductive biomaterials offer promising solutions to enhance the maturity of cultured cardiomyocytes. While the conventional culture of cardiomyocytes on nonconductive materials leads to more immature characteristics, conductive microenvironments have the potential to support sarcomere development, gap junction formation, and beating of cardiomyocytes in vitro. In this study, we systematically investigated the behaviors of cardiomyocytes on aligned electrospun fibrous membranes composed of elastic and biodegradable polyurethane (PU) doped with varying concentrations of reduced graphene oxide (rGO). Compared to PU and PU-4%rGO membranes, the PU-10%rGO membrane exhibited the highest conductivity, approaching levels close to those of native heart tissue. The PU-rGO membranes retained anisotropic viscoelastic behavior similar to that of the porcine left ventricle and a superior tensile strength. Neonatal rat cardiomyocytes (NRCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on the PU-rGO membranes displayed enhanced maturation with cell alignment and enhanced sarcomere structure and gap junction formation with PU-10%rGO having the most improved sarcomere structure and CX-43 presence. hiPSC-CMs on the PU-rGO membranes exhibited a uniform and synchronous beating pattern compared with that on PU membranes. Overall, PU-10%rGO exhibited the best performance for cardiomyocyte maturation. The conductive PU-rGO membranes provide a promising matrix for in vitro cardiomyocyte culture with promoted cell maturation/functionality and the potential for cardiac disease treatment.


Asunto(s)
Grafito , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Poliuretanos , Poliuretanos/química , Poliuretanos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/citología , Grafito/química , Grafito/farmacología , Animales , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratas , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Diferenciación Celular/efectos de los fármacos , Andamios del Tejido/química , Células Cultivadas , Elasticidad
2.
J Pediatr Surg ; 58(5): 964-970, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36797111

RESUMEN

INTRODUCTION: Congenital diaphragmatic hernia (CDH) repair is an area of active research. Large defects requiring patches have a hernia recurrence rate of up to 50%. We designed a biodegradable polyurethane (PU)-based elastic patch that matches the mechanical properties of native diaphragm muscle. We compared the PU patch to a non-biodegradable Gore-Tex™ (polytetrafluoroethylene) patch. METHODS: The biodegradable polyurethane was synthesized from polycaprolactone, hexadiisocyanate and putrescine, and then processed into fibrous PU patches by electrospinning. Rats underwent 4 mm diaphragmatic hernia (DH) creation via laparotomy followed by immediate repair with Gore-Tex™ (n = 6) or PU (n = 6) patches. Six rats underwent sham laparotomy without DH creation/repair. Diaphragm function was evaluated by fluoroscopy at 1 and 4 weeks. At 4 weeks, animals underwent gross inspection for recurrence and histologic evaluation for inflammatory reaction to the patch materials. RESULTS: There were no hernia recurrences in either cohort. Gore-Tex™ had limited diaphragm rise compared to sham at 4 weeks (1.3 mm vs 2.9 mm, p = 0.003), but no difference was found between PU and sham (1.7 mm vs 2.9 mm, p = 0.09). There were no differences between PU and Gore-Tex™ at any time point. Both patches formed an inflammatory capsule, with similar thicknesses between cohorts on the abdominal (Gore-Tex™ 0.07 mm vs. PU 0.13 mm, p = 0.39) and thoracic (Gore-Tex™ 0.3 mm vs. PU 0.6 mm, p = 0.09) sides. CONCLUSION: The biodegradable PU patch allowed for similar diaphragmatic excursion compared to control animals. There were similar inflammatory responses to both patches. Further work is needed to evaluate long-term functional outcomes and further optimize the properties of the novel PU patch in vitro and in vivo. LEVEL OF EVIDENCE: Level II, Prospective Comparative Study.


Asunto(s)
Hernias Diafragmáticas Congénitas , Ratas , Animales , Hernias Diafragmáticas Congénitas/cirugía , Proyectos Piloto , Poliuretanos , Estudios Prospectivos , Diafragma/cirugía , Estudios Retrospectivos
3.
Pharmaceutics ; 14(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893781

RESUMEN

Lung cancer is one of the major causes of cancer-related deaths worldwide, primarily because of the limitations of conventional clinical therapies such as chemotherapy and radiation therapy. Side effects associated with these treatments have made it essential for new modalities, such as tumor targeting nanoparticles that can provide cancer specific therapies. In this research, we have developed novel dual-stimuli nanoparticles (E-DSNPs), comprised of two parts; (1) Core: responsive to glutathione as stimuli and encapsulating Cisplatin (a chemo-drug), and (2) Shell: responsive to irradiation as stimuli and containing NU7441 (a radiation sensitizer). The targeting moieties on these nanoparticles are Ephrin transmembrane receptors A2 (EphA2) that are highly expressed on the surfaces of lung cancer cells. These nanoparticles were then evaluated for their enhanced targeting and therapeutic efficiency against lung cancer cell lines. E-DSNPs displayed very high uptake by lung cancer cells compared to healthy lung epithelial cells. These nanoparticles also demonstrated a triggered release of both drugs against respective stimuli and a subsequent reduction in in vitro cancer cell survival fraction compared to free drugs of equivalent concentration (survival fraction of about 0.019 and 0.19, respectively). Thus, these nanoparticles could potentially pave the path to targeted cancer therapy, while overcoming the side effects of conventional clinical therapies.

4.
Biomater Sci ; 9(14): 5011-5024, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34109952

RESUMEN

Hyaline cartilage in the knee joint is a soft tissue that is both stiff and elastic, which raises unique challenges in developing scaffolds for the repair of cartilage injury. In this study, we mixed poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid (PEG-PDLLA-DA) with polycaprolactone-poly(ethylene glycol)-polycaprolactone (PEG-PCL-DA) with the aim to create a cartilage-like hydrogel. Results indicated that the hydrogel made from PEG-PDLLA-DA/PEG-PCL-DA (50/50) was biodegradable and resilient, able to bear compressive loads with strains up to 50%. Human chondrocytes maintained high viability after being seeded in the hydrogel and underwent robust chondrogenesis upon stimulation. The application of dynamic compressive loading further promoted the generation of cartilage matrix and increased the compressive moduli of engineered cartilage tissues. Then engineered cartilage tissues, with or without being stimulated by dynamic loading, were implanted subcutaneously in mice, and results showed that the cartilage matrices and chondrocyte phenotypes were well preserved. Lastly, we conducted the mechanistic study to understand how dynamic loading influenced chondrogenesis. Specifically, the levels p-Erk and p38 kinases were found to remarkably increase on day 1 upon dynamic compressive loading, decrease on day 3, and then slightly elevate on day 7. In comparison, the expression of YAP and RhoA peaked on day 3 after mechanical loading. Levels of PIEZO1 and TRPV4 protein increased with the extension of dynamic loading culture time. Taken together, this newly developed resilient hydrogel represents a robust scaffold for cartilage regeneration. Moreover, based on the time their levels reach the peak, three groups of proteins are identified in mediating chondrocyte response to dynamic loading, which has not been previously reported.


Asunto(s)
Condrocitos , Condrogénesis , Animales , Cartílago , Células Cultivadas , Humanos , Hidrogeles , Canales Iónicos , Ratones , Canales Catiónicos TRPV , Ingeniería de Tejidos , Andamios del Tejido
5.
Methods Cell Biol ; 161: 125-146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33478686

RESUMEN

This chapter describes two mechanical expansion microscopy methods with accompanying step-by-step protocols. The first method, mechanically resolved expansion microscopy, uses non-uniform expansion of partially digested samples to provide the imaging contrast that resolves local mechanical properties. Examining bacterial cell wall with this method, we are able to distinguish bacterial species in mixed populations based on their distinct cell wall rigidity and detect cell wall damage caused by various physiological and chemical perturbations. The second method is mechanically locked expansion microscopy, in which we use a mechanically stable gel network to prevent the original polyacrylate network from shrinking in ionic buffers. This method allows us to use anti-photobleaching buffers in expansion microscopy, enabling detection of novel ultra-structures under the optical diffraction limit through super-resolution single molecule localization microscopy on bacterial cells and whole-mount immunofluorescence imaging in thick animal tissues. We also discuss potential applications and assess future directions.


Asunto(s)
Pared Celular , Imagen Individual de Molécula , Animales , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA