Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808472

RESUMEN

Non-canonical peptides (NCPs) are a class of peptides generated from regions previously thought of as non-coding, such as introns, 5' untranslated regions (UTRs), 3' UTRs, and intergenic regions. In recent years, the significance and diverse functions of NCPs have come to light, yet a systematic and comprehensive NCP database remains absent. Here, we developed NCPbook (https://ncp.wiki/ncpbook/), a database of evidence-supported NCPs, which aims to provide a resource for efficient exploration, analysis, and manipulation of NCPs. NCPbook incorporates data from diverse public databases and scientific literature. The current version of NCPbook includes 180,676 NCPs across 29 different species, evidenced by mass spectrometry (MS), ribosome profiling (Ribo-seq), or molecular experiments (ME). These NCPs are distributed across kingdoms, comprising 123,408 from 14 plant species, 56,999 from seven animal species, and 269 from eight microbial species. Furthermore, NCPbook encompasses 9,166 functionally characterized NCPs playing important roles in immunity, stress resistance, growth, and development. Equipped with a user-friendly interface, NCPbook allows users to search, browse, visualize, and retrieve data, making it an indispensable platform for researching NCPs in various plant, animal, and microbial species.

2.
BMC Genomics ; 25(1): 259, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454335

RESUMEN

Sugar Will Eventually be Exported Transporter (SWEET) proteins are highly conserved in various organisms and play crucial roles in sugar transport processes. However, SWEET proteins in peanuts, an essential leguminous crop worldwide, remain lacking in systematic characterization. Here, we identified 94 SWEET genes encoding the conservative MtN3/saliva domains in three peanut species, including 47 in Arachis hypogea, 23 in Arachis duranensis, and 24 in Arachis ipaensis. We observed significant variations in the exon-intron structure of these genes, while the motifs and domain structures remained highly conserved. Phylogenetic analysis enabled us to categorize the predicted 286 SWEET proteins from eleven species into seven distinct groups. Whole genome duplication/segment duplication and tandem duplication were the primary mechanisms contributing to the expansion of the total number of SWEET genes. In addition, an investigation of cis-elements in the potential promoter regions and expression profiles across 22 samples uncovered the diverse expression patterns of AhSWEET genes in peanuts. AhSWEET24, with the highest expression level in seeds from A. hypogaea Tifrunner, was observed to be localized on both the plasma membrane and endoplasmic reticulum membrane. Moreover, qRT-PCR results suggested that twelve seed-expressed AhSWEET genes were important in the regulation of seed development across four different peanut varieties. Together, our results provide a foundational basis for future investigations into the functions of SWEET genes in peanuts, especially in the process of seed development.


Asunto(s)
Arachis , Familia de Multigenes , Arachis/genética , Arachis/metabolismo , Filogenia , Semillas , Azúcares/metabolismo , Proteínas de Plantas/metabolismo
3.
Comput Struct Biotechnol J ; 21: 3327-3338, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38213885

RESUMEN

Soybean (Glycine max (L.) Merr.) is a globally significant crop, widely cultivated for oilseed production and animal feeds. In recent years, the rapid growth of multi-omics data from thousands of soybean accessions has provided unprecedented opportunities for researchers to explore genomes, genetic variations, and gene functions. To facilitate the utilization of these abundant data for soybean breeding and genetic improvement, the SoybeanGDB database (https://venyao.xyz/SoybeanGDB/) was developed as a comprehensive platform. SoybeanGDB integrates high-quality de novo assemblies of 39 soybean genomes and genomic variations among thousands of soybean accessions. Genomic information and variations in user-specified genomic regions can be searched and downloaded from SoybeanGDB, in a user-friendly manner. To facilitate research on genetic resources and elucidate the biological significance of genes, SoybeanGDB also incorporates a variety of bioinformatics analysis modules with graphical interfaces, such as linkage disequilibrium analysis, nucleotide diversity analysis, allele frequency analysis, gene expression analysis, primer design, gene set enrichment analysis, etc. In summary, SoybeanGDB is an essential and valuable resource that provides an open and free platform to accelerate global soybean research.

4.
Rice (N Y) ; 15(1): 23, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35438356

RESUMEN

As a major food crop and model organism, rice has been mostly studied with the largest number of functionally characterized genes among all crops. We previously built the funRiceGenes database including ~ 2800 functionally characterized rice genes and ~ 5000 members of different gene families. Since being published, the funRiceGenes database has been accessed by more than 54,400 users with over 540,000 pageviews. The funRiceGenes database has been continuously updated with newly cloned rice genes and newly published literature, based on the progress of rice functional genomics studies. Up to Nov 2021, ~ 4100 functionally characterized rice genes and ~ 6000 members of different gene families were collected in funRiceGenes, accounting for 22.3% of the 39,045 annotated protein-coding genes in the rice genome. Here, we summarized the update of the funRiceGenes database with new data and new features in the last 5 years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA