Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39001068

RESUMEN

Synthetic Aperture Radar (SAR) ship detection is applicable to various scenarios, such as maritime monitoring and navigational aids. However, the detection process is often prone to errors due to interferences from complex environmental factors like speckle noise, coastlines, and islands, which may result in false positives or missed detections. This article introduces a ship detection method for SAR images, which employs deep learning and morphological networks. Initially, adaptive preprocessing is carried out by a morphological network to enhance the edge features of ships and suppress background noise, thereby increasing detection accuracy. Subsequently, a coordinate channel attention module is integrated into the feature extraction network to improve the spatial awareness of the network toward ships, thus reducing the incidence of missed detections. Finally, a four-layer bidirectional feature pyramid network is designed, incorporating large-scale feature maps to capture detailed characteristics of ships, to enhance the detection capabilities of the network in complex geographic environments. Experiments were conducted using the publicly available SAR Ship Detection Dataset (SSDD) and High-Resolution SAR Image Dataset (HRSID). Compared with the baseline model YOLOX, the proposed method increased the recall by 3.11% and 0.22% for the SSDD and HRSID, respectively. Additionally, the mean Average Precision (mAP) improved by 0.7% and 0.36%, reaching 98.47% and 91.71% on these datasets. These results demonstrate the outstanding detection performance of our method.

2.
Sensors (Basel) ; 24(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38894236

RESUMEN

Frequency agility refers to the rapid variation of the carrier frequency of adjacent pulses, which is an effective radar active antijamming method against frequency spot jamming. Variation patterns of traditional pseudo-random frequency hopping methods are susceptible to analysis and decryption, rendering them ineffective against increasingly sophisticated jamming strategies. Although existing reinforcement learning-based methods can adaptively optimize frequency hopping strategies, they are limited in adapting to the diversity and dynamics of jamming strategies, resulting in poor performance in the face of complex unknown jamming strategies. This paper proposes an AK-MADDPG (Adaptive K-th order history-based Multi-Agent Deep Deterministic Policy Gradient) method for designing frequency hopping strategies in frequency agile radar. Signal pulses within a coherent processing interval are treated as agents, learning to optimize their hopping strategies in the case of unknown jamming strategies. Agents dynamically adjust their carrier frequencies to evade jamming and collaborate with others to enhance antijamming efficacy. This approach exploits cooperative relationships among the pulses, providing additional information for optimized frequency hopping strategies. In addition, an adaptive K-th order history method has been introduced into the algorithm to capture long-term dependencies in sequential data. Simulation results demonstrate the superior performance of the proposed method.

3.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37447932

RESUMEN

Intelligent ship detection based on synthetic aperture radar (SAR) is vital in maritime situational awareness. Deep learning methods have great advantages in SAR ship detection. However, the methods do not strike a balance between lightweight and accuracy. In this article, we propose an end-to-end lightweight SAR target detection algorithm, multi-level Laplacian pyramid denoising network (LPDNet). Firstly, an intelligent denoising method based on the multi-level Laplacian transform is proposed. Through Convolutional Neural Network (CNN)-based threshold suppression, the denoising becomes adaptive to every SAR image via back-propagation and makes the denoising processing supervised. Secondly, channel modeling is proposed to combine the spatial domain and frequency domain information. Multi-dimensional information enhances the detection effect. Thirdly, the Convolutional Block Attention Module (CBAM) is introduced into the feature fusion module of the basic framework (Yolox-tiny) so that different weights are given to each pixel of the feature map to highlight the effective features. Experiments on SSDD and AIR SARShip-1.0 demonstrate that the proposed method achieves 97.14% AP with a speed of 24.68FPS and 92.19% AP with a speed of 23.42FPS, respectively, with only 5.1 M parameters, which verifies the accuracy, efficiency, and lightweight of the proposed method.


Asunto(s)
Radar , Navíos , Algoritmos , Concienciación , Inteligencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA