Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Plant Physiol ; 192(2): 1483-1497, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36810650

RESUMEN

Glandular secretory trichomes (GSTs) can secrete and store a variety of specific metabolites. By increasing GST density, valuable metabolites can be enhanced in terms of productivity. However, the comprehensive and detailed regulatory network of GST initiation still needs further investigation. By screening a complementary DNA library derived from young leaves of Artemisia annua, we identified a MADS-box transcription factor, AaSEPALLATA1 (AaSEP1), that positively regulates GST initiation. Overexpression of AaSEP1 in A. annua substantially increased GST density and artemisinin content. The HOMEODOMAIN PROTEIN 1 (AaHD1)-AaMYB16 regulatory network regulates GST initiation via the jasmonate (JA) signaling pathway. In this study, AaSEP1 enhanced the function of AaHD1 activation on downstream GST initiation gene GLANDULAR TRICHOME-SPECIFIC WRKY 2 (AaGSW2) through interaction with AaMYB16. Moreover, AaSEP1 interacted with the JA ZIM-domain 8 (AaJAZ8) and served as an important factor in JA-mediated GST initiation. We also found that AaSEP1 interacted with CONSTITUTIVE PHOTOMORPHOGENIC 1 (AaCOP1), a major repressor of light signaling. In this study, we identified a MADS-box transcription factor that is induced by JA and light signaling and that promotes the initiation of GST in A. annua.


Asunto(s)
Artemisia annua , Tricomas , Tricomas/genética , Tricomas/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ciclopentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell Rep ; 43(2): 45, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261110

RESUMEN

KEY MESSAGE: A high-efficiency protoplast transient system was devised to screen genome editing elements in Salvia miltiorrhiza. Medicinal plants with high-value pharmaceutical ingredients have attracted research attention due to their beneficial effects on human health. Cell wall-free protoplasts of plants can be used to evaluate the efficiency of genome editing mutagenesis. The capabilities of gene editing in medicinal plants remain to be fully explored owing to their complex genetic background and shortfall of suitable transformation. Here, we took the Salvia miltiorrhiza as a representative example for developing a method to screen favorable gene editing elements with high editing efficiency in medical plants by a PEG-mediated protoplast transformation. Results indicated that using the endogenous SmU6.1 of S. miltiorrhiza to drive sgRNA and the plant codon-optimized Cas9 driven by the promoter SlEF1α can enhance the efficiency of editing. In summary, we uncover an efficacious transient method for screening editing elements and shed new light on increasing gene editing efficiency in medicinal plants.


Asunto(s)
Salvia miltiorrhiza , Humanos , Salvia miltiorrhiza/genética , Edición Génica , Protoplastos , ARN Guía de Sistemas CRISPR-Cas , Pared Celular
3.
J Integr Plant Biol ; 66(8): 1735-1751, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38980203

RESUMEN

The sesquiterpene lactone artemisinin is an important anti-malarial component produced by the glandular secretory trichomes of sweet wormwood (Artemisia annua L.). Light was previously shown to promote artemisinin production, but the underlying regulatory mechanism remains elusive. In this study, we demonstrate that ELONGATED HYPOCOTYL 5 (HY5), a central transcription factor in the light signaling pathway, cannot promote artemisinin biosynthesis on its own, as the binding of AaHY5 to the promoters of artemisinin biosynthetic genes failed to activate their transcription. Transcriptome analysis and yeast two-hybrid screening revealed the B-box transcription factor AaBBX21 as a potential interactor with AaHY5. AaBBX21 showed a trichome-specific expression pattern. Additionally, the AaBBX21-AaHY5 complex cooperatively activated transcription from the promoters of the downstream genes AaGSW1, AaMYB108, and AaORA, encoding positive regulators of artemisinin biosynthesis. Moreover, AaHY5 and AaBBX21 physically interacted with the A. annua E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). In the dark, AaCOP1 decreased the accumulation of AaHY5 and AaBBX21 and repressed the activation of genes downstream of the AaHY5-AaBBX21 complex, explaining the enhanced production of artemisinin upon light exposure. Our study provides insights into the central regulatory mechanism by which light governs terpenoid biosynthesis in the plant kingdom.


Asunto(s)
Artemisia annua , Artemisininas , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de Plantas , Artemisininas/metabolismo , Artemisia annua/metabolismo , Artemisia annua/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Tricomas/metabolismo , Vías Biosintéticas/genética
4.
Plant Cell Physiol ; 64(7): 771-785, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37098222

RESUMEN

Artemisinin, a sesquiterpene lactone obtained from Artemisia annua, is an essential therapeutic against malaria. YABBY family transcription factor AaYABBY5 is an activator of AaCYP71AV1 (cytochrome P450-dependent hydroxylase) and AaDBR2 (double-bond reductase 2); however, the protein-protein interactions of AaYABBY5, as well as the mechanism of its regulation, have not yet been elucidated. AaWRKY9 protein is a positive regulator of artemisinin biosynthesis that activates AaGSW1 (glandular trichome-specific WRKY1) and AaDBR2 (double-bond reductase 2). In this study, YABBY-WRKY interactions are revealed to indirectly regulate artemisinin production. AaYABBY5 significantly increased the activity of the luciferase (LUC) gene fused to the promoter of AaGSW1. Toward the molecular basis of this regulation, AaYABBY5 interaction with AaWRKY9 protein was found. The combined effectors AaYABBY5 + AaWRKY9 showed synergistic effects toward the activities of AaGSW1 and AaDBR2 promoters, respectively. In AaYABBY5 overexpression plants, the expression of GSW1 was found to be significantly increased when compared to that of AaYABBY5 antisense or control plants. In addition, AaGSW1 was identified as an upstream activator of AaYABBY5. Further, it was found that AaJAZ8, a transcriptional repressor of jasmonate signaling, interacted with AaYABBY5 and attenuated its activity. Co-expression of AaYABBY5 and anti-AaJAZ8 in A. annua increased the activity of AaYABBY5 toward artemisinin biosynthesis. This current study provides the first indication of the molecular basis of regulation of artemisinin biosynthesis through YABBY-WRKY interactions, which are regulated through AaJAZ8. This knowledge presents AaYABBY5 overexpression plants as a powerful genetic resource for artemisinin biosynthesis.


Asunto(s)
Artemisia annua , Artemisininas , Artemisia annua/genética , Artemisia annua/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Artemisininas/metabolismo
5.
New Phytol ; 237(6): 2224-2237, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36564967

RESUMEN

Artemisinin, a sesquiterpene compound synthesized and stored in the glandular trichome of Artemisia annua leaves, has been used to treat malaria. Previous studies have shown that both light and jasmonic acid (JA) can promote the biosynthesis of artemisinin, and the promotion of artemisinin by JA is dependent on light. However, the specific molecular mechanism remains unclear. Here, we report a MYB transcription factor, AaMYB108, identified from transcriptome analysis of light and JA treatment, as a positive regulator of artemisinin biosynthesis in A. annua. AaMYB108 promotes artemisinin biosynthesis by interacting with a previously characterized positive regulator of artemisinin, AaGSW1. Then, we found that AaMYB108 interacted with AaCOP1 and AaJAZ8, respectively. The function of AaMYB108 was influenced by AaCOP1 and AaJAZ8. Through the treatment of AaMYB108 transgenic plants with light and JA, it was found that the promotion of artemisinin by light and JA depends on the presence of AaMYB108. Taken together, our results reveal the molecular mechanism of JA regulating artemisinin biosynthesis depending on light in A. annua. This study provides new insights into the integration of light and phytohormone signaling to regulate terpene biosynthesis in plants.


Asunto(s)
Artemisia annua , Artemisininas , Artemisia annua/genética , Factores de Transcripción , Proteínas de Plantas/genética
6.
Plant Biotechnol J ; 19(7): 1412-1428, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33539631

RESUMEN

Artemisinin, a sesquiterpene lactone widely used in malaria treatment, was discovered in the medicinal plant Artemisia annua. The biosynthesis of artemisinin is efficiently regulated by jasmonate (JA) and abscisic acid (ABA) via regulatory factors. However, the mechanisms linking JA and ABA signalling with artemisinin biosynthesis through an associated regulatory network of downstream transcription factors (TFs) remain enigmatic. Here we report AaTCP15, a JA and ABA dual-responsive teosinte branched1/cycloidea/proliferating (TCP) TF, which is essential for JA and ABA-induced artemisinin biosynthesis by directly binding to and activating the promoters of DBR2 and ALDH1, two genes encoding enzymes for artemisinin biosynthesis. Furthermore, AaORA, another positive regulator of artemisinin biosynthesis responds to JA and ABA, interacts with and enhances the transactivation activity of AaTCP15 and simultaneously activates AaTCP15 transcripts. Hence, they form an AaORA-AaTCP15 module to synergistically activate DBR2, a crucial gene for artemisinin biosynthesis. More importantly, AaTCP15 expression is activated by the multiple reported JA and ABA-responsive TFs that promote artemisinin biosynthesis. Among them, AaGSW1 acts at the nexus of JA and ABA signalling to activate the artemisinin biosynthetic pathway and directly binds to and activates the AaTCP15 promoter apart from the AaORA promoter, which further facilitates formation of the AaGSW1-AaTCP15/AaORA regulatory module to integrate JA and ABA-mediated artemisinin biosynthesis. Our results establish a multilayer regulatory network of the AaGSW1-AaTCP15/AaORA module to regulate artemisinin biosynthesis through JA and ABA signalling, and provide an interesting avenue for future research exploring the special transcriptional regulation module of TCP genes associated with specialized metabolites in plants.


Asunto(s)
Artemisia annua , Artemisininas , Ácido Abscísico , Artemisia annua/genética , Artemisininas/metabolismo , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
New Phytol ; 231(5): 2050-2064, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34043829

RESUMEN

Plant glandular secretory trichomes (GSTs) produce various specialized metabolites. Increasing GST density represents a strategy to enhance the yield of these chemicals; however, the gene regulatory network that controls GST initiation remains unclear. In a previous study of Artemisia annua L., we found that a HD-ZIP IV transcription factor, AaHD1, promotes GST initiation by directly regulating AaGSW2. Here, we identified two AaHD1-interacting transcription factors, namely AaMIXTA-like 2 (AaMYB16) and AaMYB5. Through the generation and characterization of transgenic plants, we found that AaMYB16 is a positive regulator of GST initiation, whereas AaMYB5 has the opposite effect. Notably, neither of them regulates GST formation independently. Rather, they act competitively, by interacting and modulating AaHD1 promoter binding activity. Additionally, the phytohormone jasmonic acid (JA) was shown to be associated with the AaHD1-AaMYB16/AaMYB5 regulatory network through transcriptional regulation via a JASMONATE-ZIM DOMAIN (JAZ) protein repressor. These results bring new insights into the mechanism of GST initiation through regulatory complexes, which appear to have similar functions in a range of vascular plant taxa.


Asunto(s)
Artemisia annua , Artemisia annua/genética , Artemisia annua/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tricomas/metabolismo
8.
New Phytol ; 231(5): 1858-1874, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33973259

RESUMEN

Artemisinin, isolated from Artemisia annua, is recommended as the preferred drug to fight malaria. Previous research showed that jasmonate (JA)-mediated promotion of artemisinin accumulation depended on light. However, the mechanism underlying the interaction of light and JA in regulating artemisinin accumulation is still unknown. We identified a WRKY transcription factor, AaWRKY9, using transcriptome analysis. The glandular trichome-specific AaWRKY9 positively regulates artemisinin biosynthesis by directly binding to the promoters of AaDBR2 and AaGSW1. The key regulator in the light pathway AaHY5 activates the expression of AaWRKY9 by binding to its promoter. In addition, AaWRKY9 interacts with AaJAZ9, a repressor in the JA signalling pathway. AaJAZ9 represses the transcriptional activation activity of AaWRKY9 in the absence of methyl jasmonate. Notably, in the presence of methyl jasmonate, the transcriptional activation activity of AaWRKY9 is increased. Taken together, our results reveal a novel molecular mechanism underlying AaWRKY9 contributes to light-mediated and jasmonate-mediated to regulate the biosynthesis of artemisinin in A. annua. Our study provides new insights into integrating the two signalling pathways to regulate terpene biosynthesis in plants.


Asunto(s)
Artemisia annua , Artemisininas , Artemisia annua/genética , Ciclopentanos , Oxilipinas , Proteínas de Plantas/genética , Tricomas
9.
J Exp Bot ; 72(5): 1691-1701, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33165526

RESUMEN

Glandular secreting trichomes (GSTs) synthesize and secrete large quantities of secondary metabolites, some of which have well-established commercial value. An example is the anti-malarial compound artemisinin, which is synthesized in the GSTs of Artemisia annua. Accordingly, there is considerable interest in understanding the processes that regulate GST density as a strategy to increase artemisinin production. In this study, we identified a GST-specific WRKY transcription factor from A. annua, AaGSW2, which is positively regulated by the direct binding of the homeodomain proteins AaHD1 and AaHD8 to the L1-box of the AaGSW2 promoter. Overexpression of AaGSW2 in A. annua significantly increased GST density, while AaGSW2 knockdown lines showed impaired GST initiation. Ectopic expression of AaGSW2 homologs from two mint cultivars, Mentha spicata and Mentha haplocalyx, in A. annua also induced GST formation. These results reveal a molecular mechanism involving homeodomain and WRKY proteins that controls glandular trichome initiation, at least part of which is shared by A. annua and mint.


Asunto(s)
Artemisia annua , Artemisia annua/genética , Artemisia annua/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tricomas/metabolismo
10.
Biotechnol Appl Biochem ; 68(2): 338-344, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32339306

RESUMEN

Artemisinin, an effective antimalarial compound, is isolated from the medicinal plant Artemisia annua L. However, because of the low content of artemisinin in A. annua, the demand of artemisinin exceeds supply. Previous studies show that the artemisinin biosynthesis is promoted by light in A. annua. Cryptochrome1 (CRY1) is involved in many processes in the light response. In this study, AaCRY1 was cloned from A. annua. Overexpressing AaCRY1 in Arabidopsis thaliana cry1 mutant resulted in blue-light-dependent short hypocotyl phenotype and short coleoptile under blue light. Yeast two-hybrid and subcellular colocalization showed that AaCRY1 interacted with AtCOP1 (ubiquitin E3 ligase CONSTITUTIVE PHOTOMORPHOGENIC1). Overexpression of AaCRY1 in transgenic A. annua increased the artemisinin content. When AaCRY1 was overexpressed in A. annua driven by the CYP71AV1 (cytochrome P450 dependent amorpha-4,11-diene 12-hydroxylase) promoter, the artemisinin content was 1.6 times higher than that of the control. Furthermore, we expressed the C terminal of AaCRY1(CCT) involved a GUS-CCT fusion protein in A. annua. The results showed that the artemisinin content was increased to 1.7- to 2.4-fold in GUS-CCT transgenic A. annua plants. These results demonstrate that overexpression of GUS-CCT is an effective strategy to increase artemisinin production in A. annua.


Asunto(s)
Artemisia annua , Artemisininas/metabolismo , Criptocromos , Lactonas/metabolismo , Plantas Modificadas Genéticamente , Artemisia annua/genética , Artemisia annua/metabolismo , Criptocromos/biosíntesis , Criptocromos/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
11.
Molecules ; 26(15)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34361635

RESUMEN

Freesia hybrida is a group of cultivars in the genus Freesia with a strong floral scent composed of diverse volatile organic compounds (VOCs). In this study, the VOCs of 34 F. hybrida were extracted and analyzed by headspace solid phase microextraction and gas chromatography mass spectrometry (HS-SPME-GC-MS). A total of 164 VOCs whose relative contents were higher than 0.05% were detected. The numbers of VOCs in all germplasms differed between 11 to 38, and the relative contents ranged from 32.39% to 94.28%, in which most germplasms were higher than 80%. Terpenoids, especially monoterpenes, were the crucial type of VOCs in most germplasms, of which linalool and D-limonene were the most frequently occurring. Principal component analysis (PCA) clearly separated samples based on whether linalool was the main component, and hierarchical clustering analysis (HCA) clustered samples into 4 groups according to the preponderant compounds linalool and (E)-ß-ocimene. Comparison of parental species and hybrids showed heterosis in three hybrids, and the inherited and novel substances suggested that monoterpene played an important role in F. hybrida floral scent. This study established a foundation for the evaluation of Freesia genetic resources, breeding for the floral aroma and promoting commercial application.


Asunto(s)
Monoterpenos Acíclicos/química , Alquenos/química , Flores/química , Iridaceae/química , Compuestos Orgánicos Volátiles/química , Monoterpenos Acíclicos/metabolismo , Alquenos/metabolismo , Flores/genética , Flores/metabolismo , Iridaceae/genética , Iridaceae/metabolismo , Fitomejoramiento , Compuestos Orgánicos Volátiles/metabolismo
12.
Proteomics ; 20(10): e1900310, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32311217

RESUMEN

Artemisia annua is well known for biosynthesizing the antimalarial drug artemisinin. Here, a global proteomic profiling of A. annua is conducted with identification of a total of 13 403 proteins based on the genome sequence annotation database. Furthermore, a spectral library is generated to perform quantitative proteomic analysis using data independent acquisition mass spectrometry. Specifically, proteins between two chemotypes that produce high (HAP) and low (LAP) artemisinin content, respectively, are comprehensively quantified and compared. 182 proteins are identified with abundance significantly different between these two chemotypes means after the statistic use the p-value and fold change it is found 182 proteins can reach the demand conditions which represent the expression are significantly different between the high artemisnin content plants (HAPs) and the low artemisnin content plants (LAPs). Data are available via ProteomeXchange with identifier PXD015547. Overall, this current study globally identifies the proteome of A. annua and quantitatively compares the targeted sub-proteomes between the two cultivars of HAP and LAP, providing systematic information on metabolic pathways of A. annua.


Asunto(s)
Artemisia annua/genética , Artemisininas/metabolismo , Proteoma/genética , Proteómica , Artemisia annua/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Espectrometría de Masas
13.
Plant Cell Physiol ; 60(8): 1747-1760, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31076768

RESUMEN

Artemisinin, the frontline drug against malaria, is a sesquiterpenoid extracted from Artemisia annua. Light has been proposed to play an important role in the activation of artemisinin biosynthesis. Here, we report the basic leucine zipper transcription factor (TF) AaHY5 as a key regulator of light-induced biosynthesis of artemisinin. We show that AaHY5 transcription overlaps with that of artemisinin biosynthesis genes in response to light and in A. annua tissues. Analysis of AaHY5 overexpression and RNAi-suppression lines suggests that AaHY5 is a positive regulator of the expression of artemisinin biosynthesis genes and accumulation of artemisinin. We show that AaHY5 complements the hy5 mutant in Arabidopsis thaliana. Our data further suggest that AaHY5 interacts with AaCOP1, the ubiquitin E3 ligase CONSTITUTIVE PHOTOMORPHOGENIC1 in A. annua. In yeast one-hybrid and transient expression assays, we demonstrate that AaHY5 acts via the TF GLANDULAR TRICHOME-SPECIFIC WRKY 1 (AaGSW1) in artemisinin regulation. In summary, we present a novel regulator of artemisinin gene expression and propose a model in which AaHY5 indirectly controls artemisinin production in response to changing light conditions.


Asunto(s)
Artemisia annua/metabolismo , Artemisininas/metabolismo , Luz , Artemisia annua/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Factores de Transcripción
14.
J Exp Bot ; 70(15): 3969-3979, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31120500

RESUMEN

Artemisinin is a sesquiterpene lactone produced by the Chinese traditional herb Artemisia annua and is used for the treatment of malaria. It is known that salicylic acid (SA) can enhance artemisinin content but the mechanism by which it does so is not known. In this study, we systematically investigated a basic leucine zipper family transcription factor, AaTGA6, involved in SA signaling to regulate artemisinin biosynthesis. We found specific in vivo and in vitro binding of the AaTGA6 protein to a 'TGACG' element in the AaERF1 promoter. Moreover, we demonstrated that AaNPR1 can interact with AaTGA6 and enhance its DNA-binding activity to its cognate promoter element 'TGACG' in the promoter of AaERF1, thus enhancing artemisinin biosynthesis. The artemisinin contents in AaTGA6-overexpressing and RNAi transgenic plants were increased by 90-120% and decreased by 20-60%, respectively, indicating that AaTGA6 plays a positive role in artemisinin biosynthesis. Importantly, heterodimerization with AaTGA3 significantly inhibits the DNA-binding activity of AaTGA6 and plays a negative role in target gene activation. In conclusion, we demonstrate that binding of AaTGA6 to the promoter of the artemisinin-regulatory gene AaERF1 is enhanced by AaNPR1 and inhibited by AaTGA3. Based on these findings, AaTGA6 has potential value in the genetic engineering of artemisinin production.


Asunto(s)
Artemisia annua/metabolismo , Artemisininas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Artemisia annua/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética
15.
Biotechnol Appl Biochem ; 66(3): 369-375, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30719762

RESUMEN

Artemisia annua is the only natural source of the sesquiterpenoid artemisinin, which is widely used to treat malaria. The phytohormone jasmonic acid (JA) can significantly promote artemisinin biosynthesis in A. annua. AabHLH1 can bind and activate artemisinin biosynthetic genes, such as AaADS and AaCYP71AV1. In this study, we proved that AabHLH1 was responsive to MeJA treatment and highly expressed in glandular trichome-enriched tissues, and that its expression profile was similar to that of AaADS. Yeast two-hybrid assays showed that AabHLH1 interacted with all nine AaJAZ proteins in A. annua. Functional analysis with transgenic plants showed that several artemisinin biosynthetic genes were upregulated in AabHLH1-OE transgenic A. annua lines and downregulated in AabHLH1-EAR lines; furthermore, the artemisinin content was increased in the AabHLH1-OE lines and decreased in the AabHLH1-EAR lines. These results demonstrate that the JA-induced AabHLH1 positively regulates artemisinin biosynthesis by regulating the biosynthetic genes, and thus provide new insight into the regulatory mechanism of JA-induced artemisinin biosynthesis in A. annua.


Asunto(s)
Artemisia annua/efectos de los fármacos , Artemisininas/metabolismo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Factores de Transcripción/metabolismo , Artemisia annua/química , Artemisia annua/metabolismo , Artemisininas/química , Ciclopentanos/química , Oxilipinas/química , Tricomas/química , Tricomas/metabolismo
16.
New Phytol ; 218(2): 567-578, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29377155

RESUMEN

Glandular trichomes and cuticles are both specialized structures that cover the epidermis of aerial plant organs. The former are commonly regarded as 'biofactories' for producing valuable natural products. The latter are generally considered as natural barriers for defending plants against abiotic and biotic stresses. However, the regulatory network for their formation and relationship remains largely elusive. Here we identify a homeodomain-leucine zipper (HD-ZIP) IV transcription factor, AaHD8, directly promoting the expression of AaHD1 for glandular trichome initiation in Artemisia annua. We found that AaHD8 positively regulated leaf cuticle development in A. annua via controlling the expression of cuticle-related enzyme genes. Furthermore, AaHD8 interacted with a MIXTA-like protein AaMIXTA1, a positive regulator of trichome initiation and cuticle development, forming a regulatory complex and leading to enhanced transcriptional activity in regulating the expression of AaHD1 and cuticle development genes. Our results reveal a molecular mechanism by which a novel HD-ZIP IV/MIXTA complex plays a significant role in regulating epidermal development, including glandular trichome initiation and cuticle formation.


Asunto(s)
Artemisia annua/crecimiento & desarrollo , Complejos Multiproteicos/metabolismo , Epidermis de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Tricomas/crecimiento & desarrollo , Artemisia annua/genética , Artemisia annua/ultraestructura , Secuencia de Bases , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Epidermis de la Planta/genética , Epidermis de la Planta/ultraestructura , Proteínas de Plantas/genética , Unión Proteica , Transcripción Genética , Tricomas/genética , Tricomas/ultraestructura
17.
New Phytol ; 217(1): 261-276, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28940606

RESUMEN

The glandular secretory trichomes (GSTs) on Artemisia annua leaves have the capacity to secrete and store artemisinin, a compound which is the most effective treatment for uncomplicated malaria. An effective strategy to improve artemisinin content is therefore to increase the density of GSTs in A. annua. However, the formation mechanism of GSTs remains poorly understood. To explore the mechanisms of GST initiation in A. annua, we screened myeloblastosis (MYB) transcription factor genes from a GST transcriptome database and identified a MIXTA transcription factor, AaMIXTA1, which is expressed predominantly in the basal cells of GST in A. annua. Overexpression and repression of AaMIXTA1 resulted in an increase and decrease, respectively, in the number of GSTs as well as the artemisinin content in transgenic plants. Transcriptome analysis and cuticular lipid profiling showed that AaMIXTA1 is likely to be responsible for activating cuticle biosynthesis. In addition, dual-luciferase reporter assays further demonstrated that AaMIXTA1 could directly activate the expression of genes related to cuticle biosynthesis. Taken together, AaMIXTA1 regulated cuticle biosynthesis and prompted GST initiation without any abnormal impact on the morphological structure of the GSTs and so provides a new way to improve artemisinin content in this important medicinal plant.


Asunto(s)
Artemisia annua/metabolismo , Artemisininas/metabolismo , Factores de Transcripción/metabolismo , Tricomas/metabolismo , Secuencia de Aminoácidos , Artemisia annua/genética , Artemisia annua/ultraestructura , Regulación de la Expresión Génica de las Plantas , Especificidad de Órganos , Filogenia , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Epidermis de la Planta/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Alineación de Secuencia , Factores de Transcripción/genética , Tricomas/genética , Tricomas/ultraestructura
18.
J Exp Bot ; 69(5): 1109-1123, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29301032

RESUMEN

The plant Artemisia annua produces the anti-malarial compound artemisinin. Although the transcriptional regulation of artemisinin biosynthesis has been extensively studied, its post-translational regulatory mechanisms, especially that of protein phosphorylation, remain unknown. Here, we report that an ABA-responsive kinase (AaAPK1), a member of the SnRK2 family, is involved in regulating artemisinin biosynthesis. The physical interaction of AaAPK1 with AabZIP1 was confirmed by multiple assays, including yeast two-hybrid, bimolecular fluorescence complementation, and pull-down. AaAPK1, mainly expressed in flower buds and leaves, could be induced by ABA, drought, and NaCl treatments. Phos-tag mobility shift assays indicated that AaAPK1 phosphorylated both itself and AabZIP1. As a result, the phosphorylated AaAPK1 significantly enhanced the transactivational activity of AabZIP1 on the artemisinin biosynthesis genes. Substituting the Ser37 with Ala37 of AabZIP1 significantly suppressed its phosphorylation, which inhibited the transactivational activity of AabZIP1. Consistent overexpression of AaAPK1 significantly increased the production of artemisinin, as well as the expression levels of the artemisinin biosynthesis genes. Our study opens a window into the regulatory network underlying artemisinin biosynthesis at the post-translational level. Importantly, and for the first time, we provide evidence for why the kinase gene AaAPK1 is a key candidate for the metabolic engineering of artemisinin biosynthesis.


Asunto(s)
Artemisia annua/genética , Artemisininas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Fosfotransferasas/genética , Proteínas de Plantas/genética , Artemisia annua/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosforilación , Fosfotransferasas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
19.
New Phytol ; 214(1): 304-316, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28001315

RESUMEN

Artemisinin is a type of sesquiterpene lactone well known as an antimalarial drug, and is specifically produced in glandular trichomes of Artemisia annua. However, the regulatory network for the artemisinin biosynthetic pathway remains poorly understood. Exploration of trichome-specific transcription factors would facilitate the elucidation of regulatory mechanism of artemisinin biosynthesis. The WRKY transcription factor GLANDULAR TRICHOME-SPECIFIC WRKY 1 (AaGSW1) was cloned and analysed in A. annua. AaGSW1 exhibited similar expression patterns to the trichome-specific genes of the artemisinin biosynthetic pathway and AP2/ERF transcription factor AaORA. A ß-glucuronidase (GUS) staining assay further demonstrated that AaGSW1 is a glandular trichome-specific transcription factor. AaGSW1 positively regulates CYP71AV1 and AaORA expression by directly binding to the W-box motifs in their promoters. Overexpression of AaGSW1 in A. annua significantly improves artemisinin and dihydroartemisinic acid contents; moreover, AaGSW1 can be directly regulated by AaMYC2 and AabZIP1, which are positive regulators of jasmonate (JA)- and abscisic acid (ABA)-mediated artemisinin biosynthetic pathways, respectively. These results demonstrate that AaGSW1 is a glandular trichome-specific WRKY transcription factor and a positive regulator in the artemisinin biosynthetic pathway. Moreover, we propose that two trifurcate feed-forward pathways involving AaGSW1, CYP71AV1 and AaMYC2/AabZIP1 function in the JA/ABA response in A. annua.


Asunto(s)
Artemisia annua/metabolismo , Artemisininas/metabolismo , Vías Biosintéticas , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Artemisia annua/genética , Vías Biosintéticas/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucuronidasa/metabolismo , Modelos Biológicos , Especificidad de Órganos , Oxilipinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Tricomas/metabolismo
20.
New Phytol ; 213(3): 1145-1155, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27659595

RESUMEN

Glandular trichomes are generally considered biofactories that produce valuable chemicals. Increasing glandular trichome density is a very suitable way to improve the productivity of these valuable metabolites, but little is known about the regulation of glandular trichome formation. Phytohormone jasmonate (JA) promotes glandular trichome initiation in various plants, but its mechanism is also unknown. By searching transcription factors regulated by JA in Artemisia annua, we identified a novel homeodomain-leucine zipper transcription factor, HOMEODOMAIN PROTEIN 1 (AaHD1), which positively controls both glandular and nonglandular trichome initiations. Overexpression of AaHD1 in A. annua significantly increased glandular trichome density without harming plant growth. Consequently, the artemisinin content was improved. AaHD1 interacts with A. annua jasmonate ZIM-domain 8 (AaJAZ8), which is a repressor of JA, thereby resulting in decreased transcriptional activity. AaHD1 knockdown lines show decreased sensitivity to JA on glandular trichome initiation, which indicates that AaHD1 plays an important role in JA-mediated glandular trichome initiation. We identified a new transcription factor that promotes A. annua glandular trichome initiation and revealed a novel molecular mechanism by which a homeodomain protein transduces JA signal to promote glandular trichome initiation. Our results also suggested a connection between glandular and nonglandular trichome formations.


Asunto(s)
Artemisia annua/embriología , Artemisia annua/metabolismo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Proteínas de Plantas/metabolismo , Tricomas/embriología , Tricomas/metabolismo , Artemisia annua/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Modelos Biológicos , Organogénesis/efectos de los fármacos , Filogenia , Hojas de la Planta/ultraestructura , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Dominios Proteicos , Transcripción Genética/efectos de los fármacos , Tricomas/efectos de los fármacos , Tricomas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA