Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(7): 074502, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018702

RESUMEN

We investigate the arrested spreading of room temperature droplets impacting flat ice. The use of an icy substrate eliminates the nucleation energy barrier, such that a freeze front can initiate as soon as the droplet's temperature cools down to 0 °C. We employ scaling analysis to rationalize distinct regimes of arrested hydrodynamics. For gently deposited droplets, capillary-inertial spreading is halted at the onset of contact line freezing, yielding a 1/7 scaling law for the arrested diameter. At low impact velocities (We≲100), inertial effects result in a 1/2 scaling law. At higher impact velocities (We>100), inertio-viscous spreading can spill over the frozen base of the droplet until its velocity matches that of a kinetic freeze front caused by local undercooling, resulting in a 1/5 scaling law.

2.
Langmuir ; 36(8): 1871-1877, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32068407

RESUMEN

Hygroscopic materials are widely used as desiccants for applications including food production, packaging, anti-icing, and gas storage. Current techniques for quantifying the hygroscopicity of materials, such as the use of a tandem differential mobility analyzer or a gravimetric vapor sorption analyzer, require complex and expensive setups. Here, we show that the hygroscopicity of any bulk material can be simply characterized by suspending it above a deposited droplet and measuring the droplet's evaporation rate. By controlling the temperature of the droplet to correspond to the dew point, we ensured that any evaporation was directly correlated with diffusive transport into the low-pressure hygroscopic material. Using Fick's law, the effective water vapor concentration of each material was extracted and nondimensionalized by the saturation concentration to obtain a hygroscopic index. This nondimensional index ranges from 0 (no hygroscopicity) to 1 (null vapor pressure) and can also be conceptualized as 1 - aw, where aw is the material's water activity.

3.
ACS Appl Mater Interfaces ; 12(42): 48124-48132, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33021369

RESUMEN

In arid yet foggy regions, fog harvesting is emerging as a promising approach to combat water scarcity. The mesh netting used by current fog harvesters suffers from inefficient drainage, which severely constrains the water collection efficiency. Recently, it was demonstrated that fog harps can significantly enhance water harvesting as the vertical wire array does not obstruct the drainage pathway. However, fabrication limitations resulted in a very low shade coefficient of 18% for the initial fog harp prototype and the field testing was geographically confined to light fog conditions. Here, we use wire-electrical discharge machining (wire-EDM) to machine ultrafine comb arrays; winding the harp wire along a comb-embedded reinforced frame enabled a shade coefficient of 50%. To field test under heavy fog conditions, we placed the harvesters on a closed-circuit test road and inundated them with fog produced by an array of overlying fog towers. On average, the fog harps collected about three times more water than the mesh netting. During fog harvesting, the harp wires were observed to tangle together due to the surface tension of water. We developed a rational model to predict the extent of the tangling problem for any given fog harp design. By designing next-generation fog harps to be anti-tangling, we expect that even larger performance multipliers will be possible compared to the current mesh harvesters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA