Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Vasc Surg ; 71(5): 1750-1757.e7, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31519510

RESUMEN

OBJECTIVE: Peripheral artery disease is the second most common cardiovascular disease. It can often occur in complex form when there is a presence of long, diffuse, and multiple lesions. Current treatments use either single long drug-coated balloons (DCBs) or multiple DCBs; however, treatment success is limited. The purpose of this study was to investigate the preclinical feasibility of our multiple-release Tailored Medical Devices DCB (MR-TMD-DCB) to treat multiple arterial segments using a single DCB. METHODS: The MR-TMD-DCBs were developed using a two-layer coating approach. The DCBs were developed in a certified Current Good Manufacturing Practices facility using presterilized materials and reagent and then characterized for coating morphology, thermal and chemical changes, and in vitro particulate shedding. The drug loss, tissue uptake, and undelivered drug amounts were analyzed using an in vitro peripheral artery flow model and explanted pig arteries. Then, an in vivo survival study was performed using a healthy porcine model to measure the short-term drug uptake (seven swine; 14 treatments at day 1) and retention (seven swine; 14 treatments at day 7) in two different arterial segments after treatment with a single MR-TMD-DCB. RESULTS: The coating on the MR-TMD-DCB was smooth and homogeneous with paclitaxel molecularly dispersed in its amorphous state. A negligible number of particulates were shed from the MR-TMD-DCB coating. A similar amount of drug was accurately delivered into two separate explanted arteries using a single MR-TMD-DCB during the in vitro flow model testing (707 ± 109 ng/mg in the first explanted artery and 783 ± 306 ng/mg in the second explanted artery). The MR-TMD-DCB treatment resulted in equivalent drug amounts in the two arterial segments at day 1 (63 ± 19 ng/mg in the first treatment site and 59 ±19 ng/mg in the second treatment site) and at day 7 (9 ± 6 ng/mg in the first treatment site and 10 ± 6 ng/mg in the second treatment site). In addition, the drug levels at each time point were in the clinically relevant range to prevent neointimal hyperplasia. CONCLUSIONS: The MR-TMD-DCBs provided equivalent and clinically relevant drug retention levels into two different arterial segments. Thus, MR-TMD-DCBs can be used to accurately deliver drug into multiple arterial segments with the use of a single DCB. The clinical outcomes of these findings need further investigation. Future long-term pharmacokinetics and safety studies will be performed to evaluate the safety and efficacy of the MR-TMD-DCB.


Asunto(s)
Angioplastia de Balón/instrumentación , Fármacos Cardiovasculares/administración & dosificación , Paclitaxel/administración & dosificación , Enfermedad Arterial Periférica/terapia , Animales , Fármacos Cardiovasculares/química , Materiales Biocompatibles Revestidos , Modelos Animales de Enfermedad , Paclitaxel/química , Material Particulado , Porcinos , Grado de Desobstrucción Vascular
2.
J Mater Chem B ; 8(17): 3842-3851, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32219244

RESUMEN

Developing a biomaterial that can promote osteoblastic differentiation, thereby reducing the needs of exogenous osteogenic factors for large bone repair, has been a significant and long-term technical hurdle. In this study, we developed an innovative nanoclay (nanosilicate, NS)-functionalized 3D gelatin nanofibrous scaffold (GF/NS) through a thermally induced phase separation method together with the particle leaching technique (TIPS&P). In addition to the significantly higher mechanical strength, the composite scaffolds (GF/NS) demonstrated a significantly stronger ability to promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro compared to the GF scaffold. Our data further revealed that this intriguing pro-osteoblastic functionality was largely because of the unique features of NS, particularly, the strong binding ability to pro-osteoblastic factors (e.g., BMP2) as well as the intrinsic osteoinductivity of its bioactive degradation products. Most importantly, our in vivo studies indicated that GF/NS scaffolds significantly improved low-dose BMP2-induced ectopic bone regeneration in mice.


Asunto(s)
Regeneración Ósea/fisiología , Nanofibras/química , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Enfermedades Óseas/patología , Enfermedades Óseas/terapia , Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Módulo de Elasticidad , Gelatina/química , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Nanofibras/toxicidad , Osteogénesis/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Silicatos/química , Ingeniería de Tejidos , Factor de Crecimiento Transformador beta/química , Factor de Crecimiento Transformador beta/metabolismo
3.
J Biomed Mater Res B Appl Biomater ; 108(5): 2258-2275, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31967398

RESUMEN

Drug-coated balloons (DCBs) are a recent technology developed to treat peripheral artery disease (PAD). Along with a suitable formulation of antiproliferative drug and excipient, coating method is an important aspect of a DCB as these factors affect coating characteristics and drug delivery to the treatment site. The multiple release tailored medical devices DCB (MR-TMD-DCB), designed to achieve multiple inflations to treat complex PAD, contains paclitaxel (PAT) as the antiproliferative drug and polyethylene oxide (PEO) as the excipient. In our previous studies, the MR-TMD-DCB was coated using a manual dip coating method. In this study, an automated micropipette coating method was developed using a modified spray coating instrument to coat the MR-TMD-DCB. First, the coating formulation and strategy was optimized. A drug formulation of 16 wt% PAT and 4% wt/vol PEO, a polymer formulation of 2.5% wt/vol PEO, and a total of two drug layers produced a mostly uniform and thin coating with no defects and acceptable drug load. The balloon also had optimal drug uptake in arterial tissue in an in vitro flow model. Next, the reproducibility of the coating strategy was improved by optimizing the instrument parameters. The optimized instrument parameters (translational speed = 0.150 in/s, revolution rate = 100 rpm, flow rate = 0.6 ml/min) resulted in improved reproducibility of the drug load and similar coating properties as the DCB. This study demonstrated the ability to automate the micropipette process to obtain a balloon with optimal coating properties and drug tissue uptake.


Asunto(s)
Antineoplásicos/química , Portadores de Fármacos/química , Excipientes/química , Paclitaxel/química , Enfermedad Arterial Periférica/tratamiento farmacológico , Polietilenglicoles/química , Antineoplásicos/farmacología , Arterias , Transporte Biológico , Materiales Biocompatibles Revestidos , Composición de Medicamentos , Liberación de Fármacos , Humanos , Paclitaxel/farmacología , Reproducibilidad de los Resultados , Resultado del Tratamiento , Dispositivos de Acceso Vascular
4.
Oncotarget ; 11(27): 2597-2610, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32676162

RESUMEN

Outcomes have not improved for metastatic osteosarcoma for several decades. In part, this failure to develop better therapies stems from a lack of understanding of osteosarcoma biology, given the rarity of the disease and the high genetic heterogeneity at the time of diagnosis. We report here the successful establishment of a new human osteosarcoma cell line, COS-33, from a patient-derived xenograft and demonstrate retention of the biological features of the original tumor. We found high mTOR signaling activity in the cultured cells, which were sensitive to a small molecule inhibitor, rapamycin, a suppressor of the mTOR pathway. Suppressed mTOR signaling after treatment with rapamycin was confirmed by decreased phosphorylation of the S6 ribosomal protein. Increasing concentrations of rapamycin progressively inhibited cell proliferation in vitro. We observed significant inhibitory effects of the drug on cell migration, invasion, and colony formation in the cultured cells. Furthermore, we found that only a strong osteogenic inducer, bone morphogenetic protein-2, promoted the cells to differentiate into mature mineralizing osteoblasts, indicating that the COS-33 cell line may have impaired osteoblast differentiation. Grafted COS-33 cells exhibited features typical of osteosarcoma, such as production of osteoid and tumorigenicity in vivo. In addition, we revealed that the COS-33 cell line retained a complex karyotype, a homozygous deletion of the TP53 gene, and typical histological features from its original tumor. Our novel cellular model may provide a valuable platform for studying the etiology and molecular pathogenesis of osteosarcoma as well as for testing novel drugs for future genome-informed targeted therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA