Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4606, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409435

RESUMEN

Abnormalities in visual exploration affect the daily lives of patients with schizophrenia. For example, scanpath length during free-viewing is shorter in schizophrenia. However, its origin and its relevance to symptoms are unknown. Here we investigate the possibility that abnormalities in eye movements result from abnormalities in visual or visuo-cognitive processing. More specifically, we examined whether such abnormalities reflect visual salience in schizophrenia. Eye movements of 82 patients and 252 healthy individuals viewing natural and/or complex images were examined using saliency maps for static images to determine the contributions of low-level visual features to salience-guided eye movements. The results showed that the mean value for orientation salience at the gazes of the participants with schizophrenia were higher than that of the healthy control subjects. Further analyses revealed that orientation salience defined by the L + M channel of the DKL color space is specifically affected in schizophrenia, suggesting abnormalities in the magnocellular visual pathway. By looking into the computational stages of the visual salience, we found that the difference between schizophrenia and healthy control emerges at the earlier stage, suggesting functional decline in early visual processing. These results suggest that visual salience is affected in schizophrenia, thereby expanding the concept of the aberrant salience hypothesis of psychosis to the visual domain.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Movimientos Oculares , Percepción Visual
2.
Neuropsychopharmacol Rep ; 44(1): 206-215, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38348613

RESUMEN

Establishing a brain biomarker for schizophrenia is strongly desirable not only to support diagnosis by psychiatrists but also to help track the progressive changes in the brain over the course of the illness. A brain morphological signature of schizophrenia was reported in a recent study and is defined by clusters of brain regions with reduced volume in schizophrenia patients compared to healthy individuals. This signature was proven to be effective at differentiating patients with schizophrenia from healthy individuals, suggesting that it is a good candidate brain biomarker of schizophrenia. However, the longitudinal characteristics of this signature have remained unclear. In this study, we examined whether these changes occurred over time and whether they were associated with clinical outcomes. We found a significant change in the brain morphological signature in schizophrenia patients with more brain volume loss than the natural, age-related reduction in healthy individuals, suggesting that this change can capture a progressive morphological change in the brain. We further found a significant association between changes in the brain morphological signature and changes in the full-scale intelligence quotient (IQ). The patients with IQ improvement showed preserved brain morphological signatures, whereas the patients without IQ improvement showed progressive changes in the brain morphological signature, suggesting a link between potential recovery of intellectual abilities and the speed of brain pathology progression. We conclude that the brain morphological signature is a brain biomarker that can be used to evaluate progressive changes in the brain that are associated with cognitive impairment due to schizophrenia.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Inteligencia , Psicología del Esquizofrénico , Cognición , Encéfalo/patología , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA