Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37406192

RESUMEN

Recent advances in long read technologies not only enable large consortia to aim to sequence all eukaryotes on Earth, but they also allow individual laboratories to sequence their species of interest with relatively low investment. Long read technologies embody the promise of overcoming scaffolding problems associated with repeats and low complexity sequences, but the number of contigs often far exceeds the number of chromosomes and they may contain many insertion and deletion errors around homopolymer tracts. To overcome these issues, we have implemented the ILRA pipeline to correct long read-based assemblies. Contigs are first reordered, renamed, merged, circularized, or filtered if erroneous or contaminated. Illumina short reads are used subsequently to correct homopolymer errors. We successfully tested our approach by improving the genome sequences of Homo sapiens, Trypanosoma brucei, and Leptosphaeria spp., and by generating four novel Plasmodium falciparum assemblies from field samples. We found that correcting homopolymer tracts reduced the number of genes incorrectly annotated as pseudogenes, but an iterative approach seems to be required to correct more sequencing errors. In summary, we describe and benchmark the performance of our new tool, which improved the quality of novel long read assemblies up to 1 Gbp. The pipeline is available at GitHub: https://github.com/ThomasDOtto/ILRA.


Asunto(s)
Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN , Seudogenes , Cromosomas
2.
Nucleic Acids Res ; 50(21): 12251-12265, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36454008

RESUMEN

In-depth analysis of the transcriptomes of several model organisms has revealed that genomes are pervasively transcribed, giving rise to an abundance of non-canonical and mainly antisense RNA polymerase II-derived transcripts that are produced from almost any genomic context. Pervasive RNAs are degraded by surveillance mechanisms, but the repertoire of proteins that control the fate of these non-productive transcripts is still incomplete. Trypanosomes are single-celled eukaryotes that show constitutive RNA polymerase II transcription and in which initiation and termination of transcription occur at a limited number of sites per chromosome. It is not known whether pervasive transcription exists in organisms with unregulated RNA polymerase II activity, and which factors could be involved in the process. We show here that depletion of RBP33 results in overexpression of ∼40% of all annotated genes in the genome, with a marked accumulation of sense and antisense transcripts derived from silenced regions. RBP33 loss does not result in a significant increase in chromatin accessibility. Finally, we have found that transcripts that increase in abundance upon RBP33 knockdown are significantly more stable in RBP33-depleted trypanosomes, and that the exosome complex is responsible for their degradation. Our results provide strong evidence that RBP33 dampens non-productive transcription in trypanosomes.


Asunto(s)
ARN Polimerasa II , Trypanosoma , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , Trypanosoma/genética
3.
Nucleic Acids Res ; 46(18): 9414-9431, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30016465

RESUMEN

Human malaria is a devastating disease and a major cause of poverty in resource-limited countries. To develop and adapt within hosts Plasmodium falciparum undergoes drastic switches in gene expression. To identify regulatory regions in the parasite genome, we performed genome-wide profiling of chromatin accessibility in two culture-adapted isogenic subclones at four developmental stages during the intraerythrocytic cycle by using the Assay for Transposase-Accessible Chromatin by sequencing (ATAC-seq). Tn5 transposase hypersensitivity sites (THSSs) localize preferentially at transcriptional start sites (TSSs). Chromatin accessibility by ATAC-seq is predictive of active transcription and of the levels of histone marks H3K9ac and H3K4me3. Our assay allows the identification of novel regulatory regions including TSS and enhancer-like elements. We show that the dynamics in the accessible chromatin profile matches temporal transcription during development. Motif analysis of stage-specific ATAC-seq sites predicts the in vivo binding sites and function of multiple ApiAP2 transcription factors. At last, the alternative expression states of some clonally variant genes (CVGs), including eba, phist, var and clag genes, associate with a differential ATAC-seq signal at their promoters. Altogether, this study identifies genome-wide regulatory regions likely to play an essential function in the developmental transitions and in CVG expression in P. falciparum.


Asunto(s)
Genoma de Protozoos/genética , Sistemas de Lectura Abierta/genética , Plasmodium falciparum/genética , Análisis de Secuencia de ADN , Sitios de Unión , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , Epigénesis Genética/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estadios del Ciclo de Vida/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
4.
PLoS Pathog ; 11(5): e1004892, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25978383

RESUMEN

Q fever is a highly infectious disease with a worldwide distribution. Its causative agent, the intracellular bacterium Coxiella burnetii, infects a variety of vertebrate species, including humans. Its evolutionary origin remains almost entirely unknown and uncertainty persists regarding the identity and lifestyle of its ancestors. A few tick species were recently found to harbor maternally-inherited Coxiella-like organisms engaged in symbiotic interactions, but their relationships to the Q fever pathogen remain unclear. Here, we extensively sampled ticks, identifying new and atypical Coxiella strains from 40 of 58 examined species, and used this data to infer the evolutionary processes leading to the emergence of C. burnetii. Phylogenetic analyses of multi-locus typing and whole-genome sequencing data revealed that Coxiella-like organisms represent an ancient and monophyletic group allied to ticks. Remarkably, all known C. burnetii strains originate within this group and are the descendants of a Coxiella-like progenitor hosted by ticks. Using both colony-reared and field-collected gravid females, we further establish the presence of highly efficient maternal transmission of these Coxiella-like organisms in four examined tick species, a pattern coherent with an endosymbiotic lifestyle. Our laboratory culture assays also showed that these Coxiella-like organisms were not amenable to culture in the vertebrate cell environment, suggesting different metabolic requirements compared to C. burnetii. Altogether, this corpus of data demonstrates that C. burnetii recently evolved from an inherited symbiont of ticks which succeeded in infecting vertebrate cells, likely by the acquisition of novel virulence factors.


Asunto(s)
Evolución Biológica , Enfermedades Transmisibles Emergentes/transmisión , Coxiella burnetii/fisiología , Salud Global , Fiebre Q/transmisión , Simbiosis , Garrapatas/microbiología , Animales , Secuencia de Bases , Conducta Animal , Línea Celular , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/veterinaria , Coxiella burnetii/clasificación , Coxiella burnetii/crecimiento & desarrollo , Coxiella burnetii/aislamiento & purificación , Coxiellaceae/clasificación , Coxiellaceae/crecimiento & desarrollo , Coxiellaceae/aislamiento & purificación , Coxiellaceae/fisiología , Femenino , Genoma Bacteriano , Humanos , Masculino , Intercambio Materno-Fetal , Viabilidad Microbiana , Datos de Secuencia Molecular , Filogenia , Embarazo , Prevalencia , Fiebre Q/epidemiología , Fiebre Q/microbiología , Fiebre Q/veterinaria , Garrapatas/fisiología
5.
Mol Phylogenet Evol ; 98: 288-99, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26911521

RESUMEN

In this study we used the complete fauna of geckos of the Socotra Archipelago to test whether the three gecko genera co-occurring in the islands (Pristurus, Hemidactylus and Haemodracon) produced similar outcomes of morphological and climatic diversification. To test this, we produced a time-calibrated tree of 346 geckos including all 16 endemic species of the archipelago and 26 potential close-relatives in the continent. Our dating estimates revealed that most of the diversity of geckos in the archipelago was the consequence of in situ diversification. However not all genera shared similar patterns of diversification. While in Hemidactylus and Haemodracon this involved great differences in body size and low levels of climatic diversification (mostly involving sympatric distributions), an opposite pattern appeared in Pristurus in which most of the diversification involved shifts in climatic envelopes (mostly involving allopatric and parapatric distributions) but almost no size differentiation. Consistently with this, Pristurus was the only genus in which rates of size diversification in islands were substantially lower than in the continent. This illustrates how different groups can greatly differ in their patterns of intra-island diversification and highlights the importance of taxon-dependent factors at determining different patterns of diversification in the same insular context.


Asunto(s)
Ecosistema , Islas , Lagartos/anatomía & histología , Lagartos/clasificación , Filogenia , Aclimatación , Animales , Tamaño Corporal , Clima , Océano Índico , Lagartos/genética , Yemen
6.
Parasitology ; 143(13): 1730-1747, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27609411

RESUMEN

Understanding the processes that shape parasite diversification, their distribution and abundance provides valuable information on the dynamics and evolution of disease. In this study, we assessed the diversity, distribution, host-specificity and infection patterns of apicomplexan parasites in amphibians and reptiles from Oman, Arabia. Using a quantitative PCR approach we detected three apicomplexan parasites (haemogregarines, lankesterellids and sarcocystids). A total of 13 haemogregarine haplotypes were identified, which fell into four main clades in a phylogenetic framework. Phylogenetic analysis of six new lankesterellid haplotypes revealed that these parasites were distinct from, but phylogenetically related to, known Lankesterella species and might represent new taxa. The percentage of infected hosts (prevalence) and the number of haemogregarines in the blood (parasitaemia) varied significantly between gecko species. We also found significant differences in parasitaemia between haemogregarine parasite lineages (defined by phylogenetic clustering of haplotypes), suggesting differences in host-parasite compatibility between these lineages. For Pristurus rupestris, we found significant differences in haemogregarine prevalence between geographical areas. Our results suggest that host ecology and host relatedness may influence haemogregarine distributions and, more generally, highlight the importance of screening wild hosts from remote regions to provide new insights into parasite diversity.


Asunto(s)
Apicomplexa/clasificación , Apicomplexa/aislamiento & purificación , Biodiversidad , Especificidad del Huésped , Parasitemia/veterinaria , Reptiles/parasitología , Animales , Apicomplexa/genética , Omán , Carga de Parásitos , Parasitemia/parasitología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
7.
PLoS Pathog ; 8(11): e1003007, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209403

RESUMEN

A growing body of evidence points towards epigenetic mechanisms being responsible for a wide range of biological phenomena, from the plasticity of plant growth and development to the nutritional control of caste determination in honeybees and the etiology of human disease (e.g., cancer). With the (partial) elucidation of the molecular basis of epigenetic variation and the heritability of certain of these changes, the field of evolutionary epigenetics is flourishing. Despite this, the role of epigenetics in shaping host-pathogen interactions has received comparatively little attention. Yet there is plenty of evidence supporting the implication of epigenetic mechanisms in the modulation of the biological interaction between hosts and pathogens. The phenotypic plasticity of many key parasite life-history traits appears to be under epigenetic control. Moreover, pathogen-induced effects in host phenotype may have transgenerational consequences, and the bases of these changes and their heritability probably have an epigenetic component. The significance of epigenetic modifications may, however, go beyond providing a mechanistic basis for host and pathogen plasticity. Epigenetic epidemiology has recently emerged as a promising area for future research on infectious diseases. In addition, the incorporation of epigenetic inheritance and epigenetic plasticity mechanisms to evolutionary models and empirical studies of host-pathogen interactions will provide new insights into the evolution and coevolution of these associations. Here, we review the evidence available for the role epigenetics on host-pathogen interactions, and the utility and versatility of the epigenetic technologies available that can be cross-applied to host-pathogen studies. We conclude with recommendations and directions for future research on the burgeoning field of epigenetics as applied to host-pathogen interactions.


Asunto(s)
Epigénesis Genética , Interacciones Huésped-Patógeno , Sitios de Carácter Cuantitativo , Animales , Humanos
8.
Front Zool ; 10(1): 28, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23688345

RESUMEN

BACKGROUND: Ancient DNA has revolutionized conservation genetic studies as it allows monitoring of the genetic variability of species through time and predicting the impact of ecosystems' threats on future population dynamics and viability. Meanwhile, the consequences of anthropogenic activities and climate change to island faunas, particularly seabirds, remain largely unknown. In this study, we examined temporal changes in the genetic diversity of a threatened seabird, the Cory's shearwater (Calonectris borealis). FINDINGS: We analysed the mitochondrial DNA control region of ancient bone samples from the late-Holocene retrieved from the Canary archipelago (NE Atlantic) together with modern DNA sequences representative of the entire breeding range of the species. Our results show high levels of ancient genetic diversity in the Canaries comparable to that of the extant population. The temporal haplotype network further revealed rare but recurrent long-distance dispersal between ocean basins. The Bayesian demographic analyses reveal both regional and local population size expansion events, and this is in spite of the demographic decline experienced by the species over the last millennia. CONCLUSIONS: Our findings suggest that population connectivity of the species has acted as a buffer of genetic losses and illustrate the use of ancient DNA to uncover such cryptic genetic events.

9.
Zootaxa ; 3682: 105-20, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25243277

RESUMEN

Three new species of the feather mite subfamily Ingrassiinae (Acariformes: Astigmata: Xolalgidae) are described from shearwaters and petrels (Procellariiformes: Procellariidae) in the North-East of Atlantic Ocean: Ingrassia calonectris sp. n. from Calonectris borealis (Cory) (type host) and Calonectris edwardsii (Oustalet), Ingrassia micronota sp. n. and Opetiopoda bulweriae sp. n. from Bulweria bulwerii (Jardine and Selby).


Asunto(s)
Aves/parasitología , Ácaros/anatomía & histología , Ácaros/clasificación , Animales , Islas del Atlántico , Cabo Verde , Plumas/parasitología , Femenino , Masculino , Ácaros/fisiología , Especificidad de la Especie
10.
Front Cell Infect Microbiol ; 13: 1146030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305421

RESUMEN

Some parasitic diseases, such as malaria, require two hosts to complete their lifecycle: a human and an insect vector. Although most malaria research has focused on parasite development in the human host, the life cycle within the vector is critical for the propagation of the disease. The mosquito stage of the Plasmodium lifecycle represents a major demographic bottleneck, crucial for transmission blocking strategies. Furthermore, it is in the vector, where sexual recombination occurs generating "de novo" genetic diversity, which can favor the spread of drug resistance and hinder effective vaccine development. However, understanding of vector-parasite interactions is hampered by the lack of experimental systems that mimic the natural environment while allowing to control and standardize the complexity of the interactions. The breakthrough in stem cell technologies has provided new insights into human-pathogen interactions, but these advances have not been translated into insect models. Here, we review in vivo and in vitro systems that have been used so far to study malaria in the mosquito. We also highlight the relevance of single-cell technologies to progress understanding of these interactions with higher resolution and depth. Finally, we emphasize the necessity to develop robust and accessible ex vivo systems (tissues and organs) to enable investigation of the molecular mechanisms of parasite-vector interactions providing new targets for malaria control.


Asunto(s)
Culicidae , Malaria , Humanos , Animales , Mosquitos Vectores , Ambiente , Tecnología
11.
Front Immunol ; 14: 1120298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36993979

RESUMEN

The co-occurrence and the similarities between malaria and COVID-19 diseases raise the question of whether SARS-CoV-2 is capable of infecting red blood cells and, if so, whether these cells represent a competent niche for the virus. In this study, we first tested whether CD147 functions as an alternative receptor of SARS-CoV-2 to infect host cells. Our results show that transient expression of ACE2 but not CD147 in HEK293T allows SARS-CoV-2 pseudoviruses entry and infection. Secondly, using a SARS-CoV-2 wild type virus isolate we tested whether the new coronavirus could bind and enter erythrocytes. Here, we report that 10,94% of red blood cells had SARS-CoV-2 bound to the membrane or inside the cell. Finally, we hypothesized that the presence of the malaria parasite, Plasmodium falciparum, could make erythrocytes more vulnerable to SARS-CoV-2 infection due to red blood cell membrane remodelling. However, we found a low coinfection rate (9,13%), suggesting that P. falciparum would not facilitate the entry of SARS-CoV-2 virus into malaria-infected erythrocytes. Besides, the presence of SARS-CoV-2 in a P. falciparum blood culture did not affect the survival or growth rate of the malaria parasite. Our results are significant because they do not support the role of CD147 in SARS-CoV-2 infection, and indicate, that mature erythrocytes would not be an important reservoir for the virus in our body, although they can be transiently infected.


Asunto(s)
COVID-19 , Coinfección , Malaria Falciparum , Humanos , SARS-CoV-2 , Plasmodium falciparum , Células HEK293 , Malaria Falciparum/parasitología , Eritrocitos
12.
Sci Rep ; 13(1): 4793, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959235

RESUMEN

The richness and structure of symbiont assemblages are shaped by many factors acting at different spatial and temporal scales. Among them, host phylogeny and geographic distance play essential roles. To explore drivers of richness and structure of symbiont assemblages, feather mites and seabirds are an attractive model due to their peculiar traits. Feather mites are permanent ectosymbionts and considered highly host-specific with limited dispersal abilities. Seabirds harbour species-rich feather mite communities and their colonial breeding provides opportunities for symbionts to exploit several host species. To unravel the richness and test the influence of host phylogeny and geographic distance on mite communities, we collected feather mites from 11 seabird species breeding across the Atlantic Ocean and Mediterranean Sea. Using morphological criteria, we identified 33 mite species, of which 17 were new or recently described species. Based on community similarity analyses, mite communities were clearly structured by host genera, while the effect of geography within host genera or species was weak and sometimes negligible. We found a weak but significant effect of geographic distance on similarity patterns in mite communities for Cory's shearwaters Calonectris borealis. Feather mite specificity mainly occurred at the host-genus rather than at host-species level, suggesting that previously inferred host species-specificity may have resulted from poorly sampling closely related host species. Overall, our results show that host phylogeny plays a greater role than geography in determining the composition and structure of mite assemblages and pinpoints the importance of sampling mites from closely-related host species before describing mite specificity patterns.


Asunto(s)
Ácaros , Animales , Mar Mediterráneo , Aves , Especificidad del Huésped , Océano Atlántico
13.
Mol Ecol ; 21(16): 4074-92, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22738330

RESUMEN

The Socotra Archipelago is an ancient continental fragment of Gondwanan origin and one of the most isolated landforms on Earth and a biodiversity hot spot. Yet, the biogeography and evolutionary history of its endemic fauna still remain largely overlooked. We investigate the origin, tempo and mode of diversification in the Hemidactylus geckos of the Socotra Archipelago. Concatenated and multilocus species coalescent analyses of Hemidactylus from Arabia and North Africa indicate that the Hemidactylus from Socotra do not form a monophyletic group and branch as three independent and well-supported clades instead. Both the chronogram inferred using the gene tree approach of BEAST and the age-calibrated multilocus species tree obtained using *BEAST suggest that the origin of Hemidactylus from Socotra may have involved a first vicariance event that occurred in the Early Miocene, followed by two independent transoceanic dispersal events that occurred more recently, during the Pliocene. Within Socotra, we analysed patterns of genetic diversity, the phylogeography and the demographic history in all seven nonintroduced species of Hemidactylus. Results based on two mitochondrial and two nuclear loci from 144 individuals revealed complex patterns of within-island diversification and high levels of intra-species genetic divergence. The interplay of both historical and ecological factors seems to have a role in the speciation process of this group of geckos. Interestingly, the case of H. forbesii and H. oxyrhinus, which inhabit the island of Abd al Kuri with an area of 133 km(2), may represent one of the most extreme cases of intra-island speciation in reptiles ever reported.


Asunto(s)
Especiación Genética , Variación Genética , Lagartos/genética , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Datos de Secuencia Molecular , Filogeografía , Yemen
14.
Cell Host Microbe ; 30(2): 139-141, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35143762

RESUMEN

Sickle cell haemoglobin (HbS) confers protection, albeit incomplete, from severe malaria. A recent study by Band et al. in Nature on parasite genomic variation of severe malaria cases identifies parasite genomic regions with alleles associated with severe disease risk in HbS individuals. The protective effect of HbS depends therefore on parasite genotype.


Asunto(s)
Anemia de Células Falciformes , Malaria Falciparum , Malaria , Anemia de Células Falciformes/genética , Evolución Biológica , Citoprotección , Genotipo , Hemoglobina Falciforme/genética , Humanos , Malaria/prevención & control , Malaria Falciparum/parasitología
15.
Genes (Basel) ; 13(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36292619

RESUMEN

Malaria, caused by Plasmodium parasites, is still one of the biggest global health challenges. P. falciparum is the deadliest species to humans. In this review, we discuss how this parasite develops and adapts to the complex and heterogenous environments of its two hosts thanks to varied chromatin-associated and epigenetic mechanisms. First, one small family of transcription factors, the ApiAP2 proteins, functions as master regulators of spatio-temporal patterns of gene expression through the parasite life cycle. In addition, chromatin plasticity determines variable parasite cell phenotypes that link to parasite growth, virulence and transmission, enabling parasite adaptation within host conditions. In recent years, epitranscriptomics is emerging as a new regulatory layer of gene expression. We present evidence of the variety of tRNA and mRNA modifications that are being characterized in Plasmodium spp., and the dynamic changes in their abundance during parasite development and cell fate. We end up outlining that new biological systems, like the mosquito model, to decipher the unknowns about epigenetic mechanisms in vivo; and novel methodologies, to study the function of RNA modifications; are needed to discover the Achilles heel of the parasite. With this new knowledge, future strategies manipulating the epigenetics and epitranscriptomic machinery of the parasite have the potential of providing new weapons against malaria.


Asunto(s)
Malaria Falciparum , Malaria , Plasmodium , Humanos , Animales , Plasmodium falciparum/genética , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Malaria/genética , Malaria/parasitología , Cromatina/metabolismo , Epigénesis Genética/genética , Plasmodium/genética , Factores de Transcripción/genética , ARN Mensajero/metabolismo , ARN/metabolismo
16.
Front Public Health ; 10: 1048404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36579069

RESUMEN

Africa accounts for 1.5% of the global coronavirus disease 2019 (COVID-19) cases and 2.7% of deaths, but this low incidence has been partly attributed to the limited testing capacity in most countries. In addition, the population in many African countries is at high risk of infection with endemic infectious diseases such as malaria. Our aim is to determine the prevalence and circulation of SARS-CoV-2 variants, and the frequency of co-infection with the malaria parasite. We conducted serological tests and microscopy examinations on 998 volunteers of different ages and sexes in a random and stratified population sample in Burkina-Faso. In addition, nasopharyngeal samples were taken for RT-qPCR of SARS-CoV-2 and for whole viral genome sequencing. Our results show a 3.2 and a 2.5% of SARS-CoV-2 seroprevalence and PCR positivity; and 22% of malaria incidence, over the sampling period, with marked differences linked to age. Importantly, we found 8 cases of confirmed co-infection and 11 cases of suspected co-infection mostly in children and teenagers. Finally, we report the genome sequences of 13 SARS-CoV-2 isolates circulating in Burkina Faso at the time of analysis, assigned to lineages A.19, A.21, B.1.1.404, B.1.1.118, B.1 and grouped into clades; 19B, 20A, and 20B. This is the first population-based study about SARS-CoV-2 and malaria in Burkina Faso during the first wave of the pandemic, providing a relevant estimation of the real prevalence of SARS-CoV-2 and variants circulating in this Western African country. Besides, it highlights the non-negligible frequency of co-infection with malaria in African communities.


Asunto(s)
COVID-19 , Coinfección , Malaria , Niño , Adolescente , Humanos , SARS-CoV-2 , Burkina Faso/epidemiología , Prevalencia , COVID-19/epidemiología , Pandemias , Coinfección/epidemiología , Estudios Seroepidemiológicos , Malaria/epidemiología
17.
Environ Microbiol ; 13(9): 2453-67, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21651685

RESUMEN

Despite the importance of population structure for the epidemiology of pathogenic bacteria, the spatial and ecological heterogeneity of these populations is often poorly characterized. Here, we investigated the genetic diversity and population structure of the Lyme borreliosis (LB) spirochaete Borrelia garinii in its marine cycle involving colonial seabirds and different host races of the seabird tick Ixodes uriae. Multilocus sequence analyses (MLSA) on eight chromosomal and two plasmid loci (ospA and ospC) indicate that B. garinii circulating in the marine system is highly diverse. Microevolution in marine B. garinii seems to be mainly clonal, but recombination and selection do occur. Sequence types were not evenly distributed among geographic regions, with substantial population subdivision between Atlantic and Pacific Ocean basins. However, no geographic structuring was evident within regions. Results of selection analyses and phylogenetic discordance between chromosomal and plasmid loci indicate adaptive evolution is likely occurring in this system, but no pattern of host or vector-associated divergence was found. Recombination analyses showed evidence for population admixture between terrestrial and marine strains, suggesting that LB spirochaetes are exchanged between these enzootic cycles. Importantly, our results highlight the need to explicitly consider the marine system for a complete understanding of the evolutionary ecology and global epidemiology of Lyme borreliosis.


Asunto(s)
Grupo Borrelia Burgdorferi/genética , Evolución Molecular , Variación Genética , Genética de Población , Enfermedad de Lyme/microbiología , Animales , Océano Atlántico , Técnicas de Tipificación Bacteriana , Secuencia de Bases , Aves/parasitología , Grupo Borrelia Burgdorferi/clasificación , ADN Bacteriano/genética , Genes Bacterianos , Geografía , Ixodes/microbiología , Enfermedad de Lyme/epidemiología , Tipificación de Secuencias Multilocus , Océano Pacífico , Filogenia , Recombinación Genética , Selección Genética
18.
NAR Genom Bioinform ; 3(1): lqaa113, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33987532

RESUMEN

Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.

19.
Trends Parasitol ; 36(6): 495-498, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32407679

RESUMEN

In an ideal world, there are equal opportunities for women to enter and progress in all scientific disciplines without bias or prejudice. Here, we share our experiences in building communities of women parasitology and offer easy-to-implement guidelines for scientists and institutions to overcome unconscious bias and create environments with better gender equality and diversity.


Asunto(s)
Relaciones Interpersonales , Personal de Laboratorio/estadística & datos numéricos , Parasitología/organización & administración , Prejuicio/prevención & control , Diversidad Cultural , Humanos , Parasitología/estadística & datos numéricos , Parasitología/tendencias , Selección de Personal/normas
20.
Front Genet ; 11: 602949, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33365050

RESUMEN

The principles and function of chromatin and nuclear architecture have been extensively studied in model organisms, such as Drosophila melanogaster. However, little is known about the role of these epigenetic processes in transcriptional regulation in other insects including mosquitoes, which are major disease vectors and a worldwide threat for human health. Some of these life-threatening diseases are malaria, which is caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles mosquitoes; dengue fever, which is caused by an arbovirus mainly transmitted by Aedes aegypti; and West Nile fever, which is caused by an arbovirus transmitted by Culex spp. In this contribution, we review what is known about chromatin-associated mechanisms and the 3D genome structure in various mosquito vectors, including Anopheles, Aedes, and Culex spp. We also discuss the similarities between epigenetic mechanisms in mosquitoes and the model organism Drosophila melanogaster, and advocate that the field could benefit from the cross-application of state-of-the-art functional genomic technologies that are well-developed in the fruit fly. Uncovering the mosquito regulatory genome can lead to the discovery of unique regulatory networks associated with the parasitic life-style of these insects. It is also critical to understand the molecular interactions between the vectors and the pathogens that they transmit, which could hold the key to major breakthroughs on the fight against mosquito-borne diseases. Finally, it is clear that epigenetic mechanisms controlling mosquito environmental plasticity and evolvability are also of utmost importance, particularly in the current context of globalization and climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA