Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Microbiol ; 122: 104554, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839220

RESUMEN

Challenge tests are commonly employed to evaluate the growth behavior of L. monocytogenes in food matrices; they are known for being expensive and time-consuming. An alternative could be the use of predictive models to forecast microbial behavior under different conditions. In this study, the growth behavior of L. monocytogenes in different fresh produce was evaluated using a predictive model based on the Gamma concept considering pH, water activity (aw), and temperature as input factors. An extensive literature search resulted in a total of 105 research articles selected to collect growth/no growth behavior data of L. monocytogenes. Up to 808 L. monocytogenes behavior values and physicochemical characteristics were extracted for different fruits and vegetables. The predictive performance of the model as a tool for identifying the produce commodities supporting the growth of L. monocytogenes was proved by comparing with the experimental data collected from the literature. The model provided satisfactory predictions on the behavior of L. monocytogenes in vegetables (>80% agreement with experimental observations). For leafy greens, a 90% agreement was achieved. In contrast, the performance of the Gamma model was less satisfactory for fruits, as it tends to overestimate the potential of acid commodities to inhibit the growth of L. monocytogenes.


Asunto(s)
Microbiología de Alimentos , Frutas , Listeria monocytogenes , Verduras , Listeria monocytogenes/crecimiento & desarrollo , Verduras/microbiología , Verduras/crecimiento & desarrollo , Frutas/microbiología , Concentración de Iones de Hidrógeno , Temperatura , Modelos Biológicos , Agua/metabolismo , Recuento de Colonia Microbiana , Contaminación de Alimentos/análisis
2.
Food Microbiol ; 109: 104155, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36309451

RESUMEN

Some water disinfection treatments, such as chlorine and chlorine dioxide, used in the fresh-cut industry to maintain the microbiological quality of process water (PW), inactivate bacterial cells in the water but they also lead to the induction of an intermediate state between viable and non-viable known as viable but non-culturable (VBNC) state. Viable cells can participate in cross-contamination events but the significance of VBNC cells in PW, transfer to the product and potential resuscitation capacity during storage is unclear. The present study aims to determine first, if VBNC cells present in PW can cross-contaminate leafy greens during washing and secondly its potential revival during shelf-life. Process water characterized by a high chemical oxygen demand, due to the presence of high levels of organic matter, was inoculated with Listeria monocytogenes or Escherichia coli O157:H7. Inoculated PW was then treated for 1 min with chlorine dioxide (3 mg/L) or chlorine (5 mg/L) to generate VBNC cells. Absence of culturable cells was confirmed by plate count and VBNC cells by viability quantitative polymerase chain reaction (v-qPCR) complemented with two dyes, ethidium (EMA) and propidium (PMAxx) monoazide. Cross-contamination of shredded lettuce was demonstrated by monitoring the VBNC cells after washing the product for 1 min in the contaminated PW and during shelf life (15 days at 7 °C). In the case of L. monocytogenes, considering the total concentration of L. monocytogenes VBNC cells present in the PW, only a low proportion of cells were able to cross-contaminate the product during washing. VBNC L. monocytogenes cells were able to resuscitate on the product during shelf life, although levels of cultivable bacteria, close to the limit if detection (0.7 ± 0.0 log CFU/g), were only detected at the end of storage. On the other hand, VBNC cells of E. coli O157:H7 present in PW were not able to cross-contaminate shredded lettuce during washing. Moreover, when shredded lettuce was artificially inoculated with VBNC E. coli O157:H7, resuscitation of the VBNC cells during storage (15 days at 7 °C) was not observed. Based on the results obtained, injured L. monocytogenes cells present in the PW are able to be transferred to the product during washing. If VBNC L. monocytogenes cells present in leafy greens (shredded lettuce and baby spinach), they can resuscitate, although cultivable numbers remained very low. Taking all the results together, it could be concluded that under industrial conditions, VBNC cells can be transferred from water to product during washing, but their capacity to resuscitate in the leafy greens during storage is low.


Asunto(s)
Escherichia coli O157 , Listeria monocytogenes , Cloro/farmacología , Cloro/análisis , Manipulación de Alimentos/métodos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Lactuca/microbiología , Agua/análisis , Recuento de Colonia Microbiana , Microbiología de Alimentos
3.
Foods ; 12(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685104

RESUMEN

A commercial phage biocontrol for reducing Listeria monocytogenes has been described as an effective tool for improving fresh produce safety. Critical challenges in the phage application must be overcome for the industrial application. The validation studies were performed in two processing lines of two industry collaborators in Spain and Denmark, using shredded iceberg lettuce as the ready-to-eat (RTE), high process volume product. The biocontrol treatment optimized in lab-scale trials for the application of PhageGuard ListexTM was confirmed in industrial settings by four tests, two in Spain and two in Denmark. Results showed that the method of application that included the device and the processing operation step was appropriate for the proper application. The proper dose of Phage Guard ListexTM was reached in shredded iceberg lettuce and the surface was adequately covered for the successful application of phages. There was no impact on the headspace gas composition (CO2 and O2 levels), nor on the color when untreated and treated samples were compared. The post-process treatment with PhageGuard ListexTM did not cause any detrimental impact on the sensory quality, including flavor, texture, browning, spoilage, and visual appearance over the shelf-life as the phage solution was applied as a fine, mist solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA