Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Langmuir ; 40(13): 6918-6932, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38520471

RESUMEN

The outcome of the demetalation process of zeolites depends on applied treatment conditions and can lead to the formation of either open or constrained mesopores. The quaternary ammonium cations as pore-directing agents during desilication are responsible for developing constrained mesoporosity with bottleneck entrances. However, higher mesopore surface area and higher accessibility of acid sites are often found for the hierarchical zeolites with constrained mesopores. This is followed by better catalytic activity in the cracking of vacuum gas oil and polymers. For desilication with pure NaOH, a realumination process is observed and an additional acid-wash step is required to reach their full catalytic potential. Thus, this study aims to analyze the acidic and catalytic properties of hierarchical ZSM-5 zeolites of different mesoporosity types employing in situ and operando FT-IR spectroscopic evaluation of polypropylene cracking. The suitability of constrained mesoporosity is studied by assessing the neopentane diffusion in kinetic adsorption, Monte Carlo calculations, and rapid scan FT-IR spectroscopic measurement analyzed by Crank solution for diffusion. The FT-IR spectroscopic results of in situ and operando studies are supported by two-dimensional correlation analysis, allowing to establish the direction of changes seen on spectra and their order.

2.
Molecules ; 29(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542844

RESUMEN

The ethanol dehydration process is studied regarding protonic and Ag-loaded chabazite zeolite in advanced FT-IR and UV-vis operando spectroscopic studies with simultaneous mass spectroscopy and gas chromatography analyses of products. The spectroscopic investigation provides information on the species formed on the surface of catalysts, while mass spectrometry and gas chromatography methods identify the desorbed products. These studies are also supported by spectroscopic, chromatographic, and thermogravimetric analyses of coke species formed over the catalyst's surface during ethanol conversion. The Ag-chabazite catalyst shows higher selectivity for ethylene and propylene; the slower formation of coke species; and, thus, a longer lifetime.

3.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628395

RESUMEN

The commercially available zeolite HY and its desilicated analogue were subjected to a classical wet impregnation procedure with NH4VO3 to produce catalysts differentiated in acidic and redox properties. Various spectroscopic techniques (in situ probe molecules adsorption and time-resolved propane transformation FT-IR studies, XAS, 51V MAS NMR, and 2D COS UV-vis) were employed to study speciation, local coordination, and reducibility of the vanadium species introduced into the hierarchical faujasite zeolite. The acid-based redox properties of V centres were linked to catalytic activity in the oxidative dehydrogenation of propane. The modification of zeolite via caustic treatment is an effective method of adjusting its basicity-a parameter that plays an important role in the ODH process. The developed mesopore surface ensured the attachment of vanadium species to silanol groups and formation of isolated (SiO)2(HO)V=O and (SiO)3V=O sites or polymeric, highly dispersed forms located in the zeolite micropores. The higher basicity of HYdeSi, due to the presence of the Al-rich shell, aided the activation of the C-H bond leading to a higher selectivity to propene. Its polymerisation and coke formation were inhibited by the lower acid strength of the protonic sites in desilicated zeolite. The Al-rich shell was also beneficial for anchoring V species and thus their reducibility. The operando UV-vis experiments revealed higher reactivity of the bridging oxygens V-O-V over the oxo-group V=O. The (SiO)3V=O species were found to be ineffective in propane oxidation when temperature does not exceed 400 °C.


Asunto(s)
Zeolitas , Ácidos , Dominio Catalítico , Propano/química , Espectroscopía Infrarroja por Transformada de Fourier , Vanadio , Zeolitas/química
4.
J Am Chem Soc ; 143(37): 15440-15452, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34478267

RESUMEN

Neutral ketene is a crucial intermediate during zeolite carbonylation reactions. In this work, the roles of ketene and its derivates (viz., acylium ion and surface acetyl) associated with direct C-C bond coupling during the carbonylation reaction have been theoretically investigated under realistic reaction conditions and further validated by synchrotron radiation X-ray diffraction (SR-XRD) and Fourier transformed infrared (FT-IR) studies. It has been demonstrated that the zeolite confinement effect has significant influence on the formation, stability, and further transformation of ketene. Thus, the evolution and the role of reactive and inhibitive intermediates depend strongly on the framework structure and pore architecture of the zeolite catalysts. Inside side pockets of mordenite (MOR), rapid protonation of ketene occurs to form a metastable acylium ion exclusively, which is favorable toward methyl acetate (MA) and acetic acid (AcOH) formation. By contrast, in 12MR channels of MOR, a relatively longer lifetime was observed for ketene, which tends to accelerate deactivation of zeolite due to coke formation by the dimerization of ketene and further dissociation to diene and alkyne. Thus, we resolve, for the first time, a long-standing debate regarding the genuine role of ketene in zeolite catalysis. It is a paradigm to demonstrate the confinement effect on the formation, fate, and catalytic consequence of the active intermediates in zeolite catalysis.

5.
Chemistry ; 27(68): 17159-17180, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34751471

RESUMEN

NH3 temperature-programmed desorption (NH3 -TPD) is frequently used for probing the nature of the active sites in CuSSZ-13 zeolite for selective catalytic reduction (SCR) of NOx . Herein, we propose an interpretation of NH3 -TPD results, which takes into account the temperature-induced dynamics of NH3 interaction with the active centers. It is based on a comprehensive DFT/GGA+D and first-principles thermodynamic (FPT) modeling of NH3 adsorption on single Cu2+ , Cu+ , [CuOH]+ centers, dimeric [Cu-O-Cu]2+ , [Cu-O2 2- -Cu]2 species, segregated CuO nanocrystals and Brønsted acid sites (BAS). Theoretical TPD profiles are compared with the experimental data measured for samples of various Si/Al ratios and distribution of Al within the zeolite framework. Copper reduction, its relocation, followed by the intrazeolite olation/oxolation processes, which are concomitant with NH3 desorption, were revealed by electron paramagnetic resonance (EPR) and IR. DFT/FPT results show that the peaks in the desorption profiles cannot be assigned univocally to the particular Cu and BAS centers, since the observed low-, medium- and high-temperature desorption bands have contributions coming from several species, which dynamically change their speciation and redox states during NH3 -TPD experiment. Thus, a rigorous interpretation of the NH3 -TPD profiles of CuSSZ-13 in terms of the strength and concentration of the active centers of a particular type is problematic. Nonetheless, useful connections for molecular interpretation of TPD profiles can be established between the individual component peaks and the corresponding ensembles of the adsorption centers.

6.
Phys Chem Chem Phys ; 23(4): 2981-2990, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480931

RESUMEN

In this article the results of statistical MC modelling corroborated by the FT-IR spectroscopy and gravimetric adsorption studies of low aliphatic hydrocarbons in ZSM-5 (Si/Al = 28 or silicalite) are presented. The extension of the existing Dubbeldam's forcefield towards inclusion of the finite aluminium-containing zeolites is proposed and its applicability is verified experimentally for the sorption of linear and branched hydrocarbons. The FT-IR spectroscopy applicability to follow the kinetics of small hydrocarbon adsorption has been successfully verified by the application of the Crank solution for diffusion to spectroscopy derived results.

7.
Molecules ; 25(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093052

RESUMEN

Zeolite-based catalysts are globally employed in many industrial processes, such as crude-oil refining and bulk chemical production. In this work, the cracking of low-density polyethylene (LDPE) was thoroughly followed in a FTIR operando study to examine the catalytic efficiency of purely microporous zeolites of various textural characteristics. To provide complementary and valuable information on the catalytic activity of the zeolite studied, the thermogravimetric analysis results were compared with yields of the products generated under operating conditions. The reaction products were analyzed via GC-MS to determine the hydrocarbon chain distribution in terms of paraffin, olefins, and aromatics. The individual impact of textural and acidic parameters on catalytic parameters was assessed. The accumulation of bridging hydroxyls of high strength in the zeolite benefited the decrease in polymer decomposition temperature. Through a strategic comparison of purely microporous zeolites, we showed that the catalytic cracking of LDPE is dominated by the acidic feature inherent to the microporous environment.


Asunto(s)
Polietileno/química , Zeolitas/química , Catálisis , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
8.
Molecules ; 25(12)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580524

RESUMEN

An adequately tuned acid wash of hierarchical ZSM-5 zeolites offers a levelling up in the catalytic cracking of low-density polyethylene. Identification of crucial and limiting factors governing the activity of the zeolite was extended with studies about the accessibility of acid sites, nature of the realuminated layer and role of Lewis acid sites. The sequential treatment of a ZSM-5 zeolite offered enhanced activity in low-density polyethylene (LDPE) cracking at low and high conversions, as confirmed by a decrease in the temperatures needed to reach 20% and 80% conversion (T20 and T80, respectively). A linear dependence of the T80 on the coupled IHF (indexed hierarchy factor) and AFB (accessibility factor) highlighted the importance of the textural and acidic parameters in the catalytic cracking of LDPE. Operando FT-IR-GC studies confirmed a higher fraction of short-chain hydrocarbons (C3-C5) in the product distribution of hierarchical catalysts resulting from the effective polymer cracking in easily accessible pores.


Asunto(s)
Hidrocarburos/química , Polietileno/química , Zeolitas/química , Catálisis , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
9.
Phys Chem Chem Phys ; 18(14): 9490-6, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26983648

RESUMEN

Interaction of small gas-phase molecules (NO, N2O, O2, CO) with VO2 radicals inside the channels of a dealuminated SiBEA zeolite was investigated by means of electron paramagnetic resonance (EPR), infrared (IR), and mass (QMS) spectroscopies to provide direct insights into the chemistry of a unique paramagnetic state of vanadium - VO2 molecules. A facile way of forming VO2 inside the channels of SiBEA via thermal reduction of VO2(+) precursor cations was shown. Dioxovanadium(IV) was identified based on its unusual EPR signal which, as compared with the typical monooxovanadium(IV) (VO(2+) cation), is featured by rhombic symmetry and a positive Aiso value leading to a hyperfine splitting as large as 32 mT. VO2 molecules exhibit reducing properties transforming N2O and O2 into vanadium intrachannel cage adducts comprising of reactive oxygen species (O(-) and O2(-), respectively). Interaction with CO led to its oxidation to CO2, while paramagnetic NO acted as a scavenger for VO2 radicals producing diamagnetic adducts. The observed reactivity was rationalized in terms of spin-pairing, electron transfer, and oxygen transfer processes. As a result new chemical pathways of vanadium reactivity were demonstrated which were not observed so far either in the homogeneous molecular systems or supported vanadium materials.

10.
Phys Chem Chem Phys ; 18(5): 3716-29, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26761131

RESUMEN

Electronic factors essential for the bonding of a non-innocent NO ligand to ammonia-modified Co(2+) sites in cobalt-exchanged zeolites are examined for small cluster models using DFT and advanced correlated wave function calculations. The analysis of charge transfer processes between the NO ligand and the cobalt center involves two protocols: valence-bond expansion of the multiconfiguration CASSCF wave function (in terms of fragment-localized active orbitals) and spin-resolved natural orbitals for chemical valence (SR-NOCV). Applicability of SR-NOCV analysis to transition metal complexes involving non-innocent fragments is critically assessed and the approach based on the CASSCF wave function turns out to be much more robust and systematic for all studied models. It is shown that the character and direction of electron density redistribution through the Co-N-O bond, quantified by relative share of the Co(II)-NO(0), Co(III)-NO(-), and Co(I)-NO(+) resonance structures in the total wave function, fully rationalize the activation of the N-O bond upon NH3 co-ligation (evidenced by calculated and measured red-shift of the NO stretching frequency and commonly ascribed to enhanced backdonation). The huge red-shift of νN-O is attributed to an effective electron transfer between the ammonia-modified Co(ii) centers and the NO antibonding π*-orbitals (related to the increased share of the Co(III)-NO(-) form). Unexpectedly, the effect is stronger for the singlet complex with three NH3 ligands than for that with five NH3 ligands bound to the cobalt center. Our results also indicate that high-efficiency electron transfers between the Co(ii) center and the NO ligand may be enabled for the selected spin state and disabled for the other spin state of the adduct. This illustrates how the cobalt center may serve to fine-tune the electronic communication between the NO ligand and its binding site.

11.
Langmuir ; 30(7): 1880-7, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24471941

RESUMEN

A new combination of a volumetric with a dynamic method to investigate the acidity properties of aluminosilicates is introduced. In the first step, the total acidity is determined volumetrically by the measurement of two-cycle adsorption (TCA) isotherms with ammonia as a probe, directly followed by a dynamic temperature-programmed desorption (TPD) experiment to define the acid strength distribution. Furthermore, the results obtained by the new direct combination of TCA and TPD are validated by comparison with an in-situ FTIR (Fourier transform infrared) study with the same probe molecule on the same materials. Both acidity characterization techniques are compared, and we comment on their complementarity, benefits, and pitfalls. The material under investigation is a new type of bimodal microporous and mesoporous material with zeolitic characteristics, synthesized by a mesotemplate-free method. The acidic nature of the novel material is compared to two reference materials: a crystalline zeolite and a mesoporous aluminum incorporated mesocellular foam (Al-MCF) with amorphous characteristics.

12.
Phys Chem Chem Phys ; 16(43): 24089-98, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25245279

RESUMEN

IR spectroscopic studies and quantum chemical modeling (aided by the analysis of charge transfer processes between co-adsorbed ammonia and the Co(II)-NO adduct) evidence that donor ammonia molecules, ligated to extraframework Co(2+) centers in zeolites, vitally affect the strength of the N-O bond. Calculations indicate that versatility of ammine nitrosyl complexes, differing in the number of NH3 ligands as well as in the geometry and electronic structure of the Co-N-O unit (showing variable activation of NO) may co-exist in zeolite frameworks. However, only combined analysis of experimental and calculation results points to the adducts with three or five NH3 coligands as decisive. The novel finding concerning the interpretation of discussed IR spectra is the assignment of the most down-shifted bands at 1600-1615 cm(-1) to the N-O stretch in the singlet [Co(NH3)3(NO)](2+) adduct, in place of tentative ascription to pentaammine adducts. Theory indicates also that the Co(ii) center (with manifold of close-lying electronic and spin states) acts as a tunable electron donor where the spin state may open or close specific channels transferring electron density from the donor ligands (treated as the part of environment) to the NO molecule.

13.
ACS Appl Mater Interfaces ; 15(23): 28184-28192, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37265204

RESUMEN

Intentionally introduced defects into solid materials create opportunities to control and tune their diverse physicochemical properties. Despite the growing interest in defect-engineered metal-organic frameworks (MOFs), there are still only a handful of studies on defective proton-conducting MOFs, including no reports on two-dimensional ones. Ion-conducting materials are fundamentally of great importance to the development of energy storage and conversion devices, including fuel cells and batteries. In this work, we demonstrate the introduction of missing-linker defects into a sulfonated proton conductive 2D zirconium-based MOF (JUK-14), using a facile post-synthetic approach and compare the stability and performance of the resulting materials, including proton conductivity, as well as adsorption of N2, CO2, and H2O molecules. We also discuss the associated presence of interlayer counterions and their effect on the properties and stability. Our approach to defect engineering can be extended to other layered MOFs and used for tuning their activity.

14.
Sci Rep ; 13(1): 10737, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400511

RESUMEN

Covalent triazine-based frameworks have attracted much interest recently due to their high surface area and excellent thermal and electrochemical stabilities. This study shows that covalently immobilizing triazine-based structures on spherical carbon nanostructures results in the organization of micro- and mesopores in a three-dimensional manner. We selected the nitrile-functionalized pyrrolo[3,2-b]pyrrole unit to form triazine rings to construct a covalent organic framework. Combining spherical carbon nanostructures with the triazine framework produced a material with unique physicochemical properties, exhibiting the highest specific capacitance value of 638 F g-1 in aqueous acidic solutions. This phenomenon is attributed to many factors. The material exhibits a large surface area, a high content of micropores, a high content of graphitic N, and N-sites with basicity and semi-crystalline character. Thanks to the high structural organization and reproducibility, and remarkably high specific capacitance, these systems are promising materials for use in electrochemistry. For the first time, hybrid systems containing triazine-based frameworks and carbon nano-onions were used as electrodes for supercapacitors.

15.
Phys Chem Chem Phys ; 14(7): 2203-15, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22134498

RESUMEN

Interaction of a Co-BEA catalyst with individual components (NO, C(3)H(6), CO, O(2)) and mixtures simulating the real feed of the selective catalytic reduction (SCR) of nitric oxide in static and pulse experiments at variable temperatures was investigated by means of IR, EPR, and operando DRIFT spectroscopy coupled with QMS/GC analysis of the products. Speciation of cobalt active sites into Co(II), mono- and polynuclear oxo-cobalt species as well as CoO clusters was quantified by IR using CO and NO as probe molecules. The key intermediates, by-products, and final products of the SCR reaction were identified and their spectroscopic signatures ascertained. Based on the spectroscopic operando results, a concise mechanistic scheme of the selective catalytic reduction of nitric oxide by propene, triggered by a two-electron Co(II)/Co(0) redox couple, was developed. It consists of a complex network of the sequential/parallel selective reduction steps that are interlocked by the rival nonselective oxidation of the intermediates and their thermal decomposition. It has been shown that the SCR process is initiated by the chemoselective capture of NO from the reaction mixture by the cobalt active sites leading to the cobalt(II) dinitrosyls, which in the excess of oxygen are partially oxidized to surface nitrates and nitrites. N(2)O is produced by semi-decomposition of the dinitrosyl intermediates on the mononuclear centers, whereas NO(2)via NO oxidation on the polynuclear oxo-cobalt sites. Cyanide and isocyanate species, formed together with propene oxygenates in the course of the C=C bond scission, are the mechanistically pivotal reaction intermediates of C(3)H(6) interaction with the dinitrosyles and NO(3)(-)/NO(2)(-) surface species. Dinitrogen is produced by three main reaction routes involving oxidation of cyanides by NO/NO(2), reduction of dinitrosyls, nitrates, and nitrites by propene oxygenates (medium temperature range) or their reduction by carbon monoxide (high temperature range).

16.
Nat Commun ; 13(1): 7106, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402761

RESUMEN

By employing ab initio molecular dynamic simulations, solid-state NMR spectroscopy, and two-dimensional correlation analysis of rapid scan Fourier transform infrared spectroscopy data, a new pathway is proposed for the formation of methyl acetate (MA) via the acylium ion (i.e.,CH3 - C ≡ O+) in 12-membered ring (MR) channel of mordenite by an integrated reaction/diffusion kinetics model, and this route is kinetically and thermodynamically more favorable than the traditional viewpoint in 8MR channel. From perspective of the complete catalytic cycle, the separation of these two reaction zones, i.e., the C-C bond coupling in 8MR channel and MA formation in 12MR channel, effectively avoids aggregation of highly active acetyl species or ketene, thereby reducing undesired carbon deposit production. The synergistic effect of different channels appears to account for the high carbonylation activity in mordenite that has thus far not been fully explained, and this paradigm may rationalize the observed catalytic activity of other reactions.

17.
ACS Appl Mater Interfaces ; 14(5): 6667-6679, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35076211

RESUMEN

Layer-like FAU-type zeolite Y was synthesized by an organosilane-assisted low-temperature hydrothermal method and its catalytic activity was verified in the low-density polyethylene (LDPE) cracking process. The synthesis procedure of high-silica layer-like zeolite Y was based on organosilane as a growth modifier, and for the first time, the seeding step was successfully avoided. The X-ray diffraction and electron microscopy studies, scanning electron microscopy and transmission electron microscopy confirmed the formation of pure FAU structure and zeolite particles of plate-like morphology arranged in the manner of the skeleton of a cuboctahedron. The in situ Fourier transform infrared (FT-IR) spectroscopic studies, low-temperature nitrogen sorption, and electron microscopy results provided detailed information on the obtained layer-like zeolite Y. The acidic and textural properties of layer-like zeolites Y were faced with the catalytic activity and selectivity in the cracking of LDPE. The quantitative assessment of catalyst selectivity performed in FT-IR/GC-MS operando studies pointed out that LDPE cracking over the layer-like material yielded value-added C3-C4 gases and C5-C6 liquid fraction at the expense of C7+ fraction. The detailed analysis of coke residue on the catalyst was also performed by means of FT-IR spectroscopy, thermogravimetric analysis, and thermoprogrammed oxidation coupled with mass spectrometry for the detection of oxidation products. The acidic and textural properties gave a foundation for the catalytic performance and coking of catalysts.

18.
ACS Appl Mater Interfaces ; 13(43): 51628-51642, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34677930

RESUMEN

Defects are widely present in nanomaterials, and they are recognized as the active sites that tune surface properties in the local region for catalysis. Recently, the theory linking defect structures and catalytic properties of nanocatalysts has been most commonly described. In this study, we prepared boron-doped carbon nano-onions (B-CNOs) by applying an annealing treatment of ultradispersed nanodiamond particles and amorphous boron. These experimental conditions guarantee doping of CNOs with boron atoms in the entire carbon nanostructure, thereby ensuring structural homogeneity. In our research, we discuss the correlations between defective structures of B-CNOs with their catalytic properties toward SO2 and tert-butanol dehydration. We show that there is a close relationship between the catalytic properties of the B-CNOs and the experimental conditions for their formation. It is not only the mass of the substrates used for the formation of B-CNOs that is crucial, that is, the mass ratio of NDs to amorphous B, but also the process, including temperature and gas atmosphere. As it was expected, all B-CNOs demonstrated significant catalytic activity in HSO3- oxidation. However, the subsequent annealing in an air atmosphere diminished their catalytic activity. Unfortunately, no direct relationship between the catalytic activity and the presence of heteroatoms on the B-CNO surface was observed. There was a linear dependence between catalytic activity and Raman reactivity factors for each of the B-CNO materials. In contrast to SO2 oxidation, the B-CNO-a samples showed higher catalytic activity in tert-butanol dehydration due to the presence of Brønsted and Lewis acid sites. The occurence of three types of boron-Lewis sites differing in electron donor properties was confirmed using quantitative infrared spectroscopic measurements of pyridine adsorption.

19.
Commun Chem ; 3(1): 25, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36703441

RESUMEN

The organization of aluminium atoms in zeolites affects their catalytic properties. Here we demonstrate that the aluminium distribution is a key parameter controlling the reaction pathway of acid catalysed reactions over ZSM-5 zeolites. We study ethanol transformation over two ZSM-5 samples with similar Si/Al ratios of ~15, and with aluminium atoms located mainly at the channel intersections but differently distributed in the framework. One of the samples contains mostly isolated aluminium atoms while the other has a large fraction of two aluminium atoms located in one ring. The FT-IR time-resolved operando study, supported by catalytic results, reveals that the reaction pathway in ethanol transformation over ZSM-5 is controlled by the proximity of aluminium atoms in the framework. ZSM-5 containing mostly isolated Al atoms transforms ethanol in the associative pathway, and conversely ZSM-5 containing a dominating fraction of two aluminium atoms in one ring transforms ethanol in the dissociative pathway.

20.
ChemSusChem ; 12(3): 633-638, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30520260

RESUMEN

A new theoretical and practical framework has been developed through operando study of the zeolite catalytic cracking of low-density polyethylene (as a model reaction) under reaction conditions. Results show that microporous ZSM-5 gives rise to less cracking products. Hierarchical ZSM-5 zeolites are more active cracking catalysts, rendering more C2 -C5 hydrocarbons, with a delayed deactivation due to the secondary porosity. This tool in combination with thermogravimetric analysis provides complementary and valuable information for the study, and design of advanced catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA