Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(38): E7997-E8006, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874589

RESUMEN

G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT1), its associated G protein, and ß-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT1 signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT1 overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, "automitocrine," analogous to "autocrine" when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand-receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.


Asunto(s)
Lesiones Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Melatonina/biosíntesis , Mitocondrias/metabolismo , Receptor de Melatonina MT1/metabolismo , Transducción de Señal , Animales , Lesiones Encefálicas/genética , Isquemia Encefálica/genética , Citocromos c/genética , Citocromos c/metabolismo , Masculino , Melatonina/genética , Ratones , Mitocondrias/genética , Receptor de Melatonina MT1/genética
2.
Immunohorizons ; 8(2): 136-146, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334757

RESUMEN

hnRNP A1 is an important RNA-binding protein that influences many stages of RNA processing, including transcription, alternative splicing, mRNA nuclear export, and RNA stability. However, the role of hnRNP A1 in immune cells, specifically CD4+ T cells, remains unclear. We previously showed that Akt phosphorylation of hnRNP A1 was dependent on TCR signal strength and was associated with Treg differentiation. To explore the impact of hnRNP A1 phosphorylation by Akt on CD4+ T cell differentiation, our laboratory generated a mutant mouse model, hnRNP A1-S199A (A1-MUT) in which the major Akt phosphorylation site on hnRNP A1 was mutated to alanine using CRISPR Cas9 technology. Immune profiling of A1-MUT mice revealed changes in the numbers of Tregs in the mesenteric lymph node. We found no significant differences in naive CD4+ T cell differentiation into Th1, Th2, Th17, or T regulatory cells (Tregs) in vitro. In vivo, Treg differentiation assays using OTII-A1-Mut CD4+ T cells exposed to OVA food revealed migration and homing defects in the A1-MUT but no change in Treg induction. A1-MUT mice were immunized with NP- keyhole limpet hemocyanin, and normal germinal center development, normal numbers of NP-specific B cells, and no change in Tfh numbers were observed. In conclusion, Akt phosphorylation of hnRNP A1 S199 does not play a role in CD4+ T cell fate or function in the models tested. This hnRNP A1-S199A mouse model should be a valuable tool to study the role of Akt phosphorylation of hnRNP A1-S199 in different cell types or other mouse models of human disease.


Asunto(s)
Diferenciación Celular , Ribonucleoproteína Nuclear Heterogénea A1 , Linfocitos T , Animales , Ratones , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Serina/metabolismo , Transducción de Señal , Linfocitos T/citología
3.
Immunometabolism (Cobham) ; 5(1): e00015, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36710922

RESUMEN

The activation and differentiation of CD4+ T cells is a complex process that is controlled by many factors. A critical component of the signaling pathway triggered following T-cell receptor (TCR) engagement is the serine threonine kinase Akt. Akt is involved in the control of many cellular processes including proliferation, metabolism, and differentiation of specific TH-cell subsets. Recent work has shown that, depending on the nature or strength of the TCR activation, Akt may activate different sets of substrates which then lead to differential cellular outcomes. Akt plays an important role in controlling the strength of the TCR signal and several recent studies have identified novel mechanisms including control of the expression of negative regulators of TCR signaling, and the influence on regulatory T cells (Treg) and TH17 differentiation. Many of these functions are mediated via control of the FoxO family of transcription factors, that play an important role in metabolism and Th cell differentiation. A theme that is emerging is that Akt does not function in the same way in all T-cell types. We highlight differences between CD4 and CD8 T cells as well as between Treg, TH17, and TFH cells. While Akt activity has been implicated in the control of alternative splicing in tumor cells, recent studies are emerging that indicate that similar functions may exist in CD4 T cells. In this mini review, we highlight some of the recent advances in these areas of Akt function that demonstrate the varied role that Akt plays in the function of CD4 T cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA