Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Genome Res ; 34(6): 863-876, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38839375

RESUMEN

Eusocial Hymenoptera have the highest recombination rates among all multicellular animals studied so far, but it is unclear why this is and how this affects the biology of individual species. A high-resolution linkage map for the ant Cardiocondyla obscurior corroborates genome-wide high recombination rates reported for ants (8.1 cM/Mb). However, recombination is locally suppressed in regions that are enriched with TEs, that have strong haplotype divergence, or that show signatures of epistatic selection in C. obscurior The results do not support the hypotheses that high recombination rates are linked to phenotypic plasticity or to modulating selection efficiency. Instead, genetic diversity and the frequency of structural variants correlate positively with local recombination rates, potentially compensating for the low levels of genetic variation expected in haplodiploid social Hymenoptera with low effective population size. Ultimately, the data show that recombination contributes to within-population polymorphism and to the divergence of the lineages within C. obscurior.


Asunto(s)
Hormigas , Recombinación Genética , Animales , Hormigas/genética , Mapeo Cromosómico , Haplotipos , Variación Genética , Genoma de los Insectos , Selección Genética , Evolución Molecular
2.
BMC Biol ; 22(1): 109, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735942

RESUMEN

BACKGROUND: Social insects vary considerably in their social organization both between and within species. In the California harvester ant, Pogonomyrmex californicus (Buckley 1867), colonies are commonly founded and headed by a single queen (haplometrosis, primary monogyny). However, in some populations in California (USA), unrelated queens cooperate not only during founding (pleometrosis) but also throughout the life of the colony (primary polygyny). The genetic architecture and evolutionary dynamics of this complex social niche polymorphism (haplometrosis vs pleometrosis) have remained unknown. RESULTS: We provide a first analysis of its genomic basis and evolutionary history using population genomics comparing individuals from a haplometrotic population to those from a pleometrotic population. We discovered a recently evolved (< 200 k years), 8-Mb non-recombining region segregating with the observed social niche polymorphism. This region shares several characteristics with supergenes underlying social polymorphisms in other socially polymorphic ant species. However, we also find remarkable differences from previously described social supergenes. Particularly, four additional genomic regions not in linkage with the supergene show signatures of a selective sweep in the pleometrotic population. Within these regions, we find for example genes crucial for epigenetic regulation via histone modification (chameau) and DNA methylation (Dnmt1). CONCLUSIONS: Altogether, our results suggest that social morph in this species is a polygenic trait involving a potential young supergene. Further studies targeting haplo- and pleometrotic individuals from a single population are however required to conclusively resolve whether these genetic differences underlie the alternative social phenotypes or have emerged through genetic drift.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Conducta Social , Genómica , Genoma de los Insectos , Polimorfismo Genético , Evolución Biológica , Femenino , California , Evolución Molecular
3.
Bioscience ; 74(3): 146-158, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38560618

RESUMEN

What are social niches, and how do they arise and change? Our first goal in the present article is to clarify the concept of an individualized social niche and to distinguish it from related concepts, such as a social environment and a social role. We argue that focal individuals are integral parts of individualized social niches and that social interactions with conspecifics are further core elements of social niches. Our second goal in the present article is to characterize three types of processes-social niche construction, conformance, and choice (social NC3 processes)-that explain how individualized social niches originate and change. Our approach brings together studies of behavior, ecology, and evolution and integrates social niches into the broader concept of an individualized ecological niche. We show how clarifying the concept of a social niche and recognizing the differences between the three social NC3 processes enhance and stimulate empirical research.

4.
Proc Natl Acad Sci U S A ; 117(30): 17949-17956, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32669435

RESUMEN

Individual differences in learning can influence how animals respond to and communicate about their environment, which may nonlinearly shape how a social group accomplishes a collective task. There are few empirical examples of how differences in collective dynamics emerge from variation among individuals in cognition. Here, we use a naturally variable and heritable learning behavior called latent inhibition (LI) to show that interactions among individuals that differ in this cognitive ability drive collective foraging behavior in honey bee colonies. We artificially selected two distinct phenotypes: high-LI bees that ignore previously familiar stimuli in favor of novel ones and low-LI bees that learn familiar and novel stimuli equally well. We then provided colonies differentially composed of different ratios of these phenotypes with a choice between familiar and novel feeders. Colonies of predominantly high-LI individuals preferred to visit familiar food locations, while low-LI colonies visited novel and familiar food locations equally. Interestingly, in colonies of mixed learning phenotypes, the low-LI individuals showed a preference to visiting familiar feeders, which contrasts with their behavior when in a uniform low-LI group. We show that the shift in feeder preference of low-LI bees is driven by foragers of the high-LI phenotype dancing more intensely and attracting more followers. Our results reveal that cognitive abilities of individuals and their social interactions, which we argue relate to differences in attention, drive emergent collective outcomes.


Asunto(s)
Abejas/fisiología , Conducta Animal , Aprendizaje , Fenotipo , Análisis de Varianza , Animales , Modelos Teóricos
5.
Bioscience ; 72(6): 538-548, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35677293

RESUMEN

Organisms interact with their environments in various ways. We present a conceptual framework that distinguishes three mechanisms of organism-environment interaction. We call these NC3 mechanisms: niche construction, in which individuals make changes to the environment; niche choice, in which individuals select an environment; and niche conformance, in which individuals adjust their phenotypes in response to the environment. Each of these individual-level mechanisms affects an individual's phenotype-environment match, its fitness, and its individualized niche, defined in terms of the environmental conditions under which the individual can survive and reproduce. Our framework identifies how individuals alter the selective regimes that they and other organisms experience. It also places clear emphasis on individual differences and construes niche construction and other processes as evolved mechanisms. The NC3 mechanism framework therefore helps to integrate population-level and individual-level research.

6.
J Exp Zool B Mol Dev Evol ; 336(4): 333-340, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33621432

RESUMEN

Canalization underlies the expression of steady phenotypes in the face of unsteady environmental conditions or varying genetic backgrounds. The chaperone HSP90 has been identified as a key component of the molecular machinery regulating canalization and a growing body of research suggests that HSP90 could act as a general capacitator in evolution. However, empirical data about HSP90-dependent phenotypic variation and its evolutionary impact is still scarce, particularly for non-model species. Here we report how pharmacological suppression of HSP90 increases morphological variation up to 87% in the invasive ant Cardiocondyla obscurior. We show that workers treated with the HSP90 inhibitor 17-DMAG are significantly more diverse compared to untreated workers in two of four measured traits: maximal eye distance and maximal propodeal spine distance. We further find morphological differentiation between natural populations of C. obscurior in the same traits that responded to our pharmacological treatment. These findings add support for the putative impact of HSP90 on canalization, the modularity of phenotypic traits, and its potential role in morphological evolution of ants.


Asunto(s)
Hormigas/metabolismo , Benzoquinonas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Especies Introducidas , Lactamas Macrocíclicas/farmacología , Animales , Hormigas/anatomía & histología , Femenino , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Masculino
7.
Mol Phylogenet Evol ; 155: 107036, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33278587

RESUMEN

The New World ant genus Myrmecocystus Wesmael, 1838 (Formicidae: Formicinae: Lasiini) is endemic to arid and semi-arid habitats of the western United States and Mexico. Several intriguing life history traits have been described for the genus, the best-known of which are replete workers, that store liquified food in their largely expanded crops and are colloquially referred to as "honeypots". Despite their interesting biology and ecological importance for arid ecosystems, the evolutionary history of Myrmecocystus ants is largely unknown and the current taxonomy presents an unsatisfactory systematic framework. We use ultraconserved elements to infer the evolutionary history of Myrmecocystus ants and provide a comprehensive, dated phylogenetic framework that clarifies the molecular systematics within the genus with high statistical support, reveals cryptic diversity, and reconstructs ancestral foraging activity. Using maximum likelihood, Bayesian and species tree approaches on a data set of 134 ingroup specimens (including samples from natural history collections and type material), we recover largely identical topologies that leave the position of only few clades uncertain and cover the intra- and interspecific variation of 28 of the 29 described and six undescribed species. In addition to traditional support values, such as bootstrap and posterior probability, we quantify genealogical concordance to estimate the effects of conflicting evolutionary histories on phylogenetic inference. Our analyses reveal that the current taxonomic classification of the genus is inconsistent with the molecular phylogenetic inference, and we identify cryptic diversity in seven species. Divergence dating suggests that the split between Myrmecocystus and its sister taxon Lasius occurred in the early Miocene. Crown group Myrmecocystus started diversifying about 14.08 Ma ago when the gradual aridification of the southwestern United States and northern Mexico led to formation of the American deserts and to adaptive radiations of many desert taxa.


Asunto(s)
Hormigas/clasificación , Biodiversidad , Filogenia , Animales , Teorema de Bayes , Secuencia Conservada/genética , Clima Desértico , Sitios Genéticos , Miel , Humanos , Funciones de Verosimilitud , Sudoeste de Estados Unidos , Especificidad de la Especie , Factores de Tiempo
8.
BMC Genomics ; 21(1): 376, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471448

RESUMEN

BACKGROUND: Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS: We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS: These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.


Asunto(s)
Áfidos/genética , Genómica , Avispas/genética , Animales , Áfidos/inmunología , Metilación de ADN/genética , Secuencia Rica en GC , Proteínas de Insectos/genética , Procesos de Determinación del Sexo/genética , Ponzoñas/genética , Avispas/inmunología
9.
J Anim Ecol ; 88(2): 236-246, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30289166

RESUMEN

Animals must effectively balance the time they spend exploring the environment for new resources and exploiting them. One way that social animals accomplish this balance is by allocating these two tasks to different individuals. In honeybees, foraging is divided between scouts, which tend to explore the landscape for novel resources, and recruits, which tend to exploit these resources. Exploring the variation in cognitive and physiological mechanisms of foraging behaviour will provide a deeper understanding of how the division of labour is regulated in social insect societies. Here, we uncover how honeybee foraging behaviour may be shaped by predispositions in performance of latent inhibition (LI), which is a form of non-associative learning by which individuals learn to ignore familiar information. We compared LI between scouts and recruits, hypothesizing that differences in learning would correlate with differences in foraging behaviour. Scouts seek out and encounter many new odours while locating novel resources, while recruits continuously forage from the same resource, even as its quality degrades. We found that scouts show stronger LI than recruits, possibly reflecting their need to discriminate forage quality. We also found that scouts have significantly elevated tyramine compared to recruits. Furthermore, after associative odour training, recruits have significantly diminished octopamine in their brains compared to scouts. These results suggest that individual variation in learning behaviour shapes the phenotypic behavioural differences between different types of honeybee foragers. These differences in turn have important consequences for how honeybee colonies interact with their environment. Uncovering the proximate mechanisms that influence individual variation in foraging behaviour is crucial for understanding the ecological context in which societies evolve.


Asunto(s)
Individualidad , Aprendizaje , Animales , Abejas , Aminas Biogénicas , Memoria , Conducta Social
10.
Anal Bioanal Chem ; 411(13): 2981-2993, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30957203

RESUMEN

Long-chain cuticular hydrocarbons (CHC) are key components of chemical communication in many insects. The parasitoid jewel wasps from the genus Nasonia use their CHC profile as sex pheromone and for species recognition. The standard analytical tool to analyze CHC is gas chromatography coupled with mass spectrometric detection (GC/MS). This method reliably identifies short- to long-chain alkanes and alkenes, but CHC with more than 40 carbon atoms are usually not detected. Here, we applied two laser mass spectrometry (MS) techniques, namely direct laser desorption/ionization (d)LDI and silver-assisted (Ag-)LDI MS, respectively, to analyze CHC profiles of N. vitripennis, N. giraulti, and N. longicornis directly from the cuticle or extracts. Furthermore, we applied direct analysis in real-time (DART) MS as another orthogonal technique for extracts. The three methods corroborated previous results based on GC/MS, i.e., the production of CHC with carbon numbers between C25 and C40. However, we discovered a novel series of long-chain CHC ranging from C41 to C51/C52. Additionally, several previously unreported singly and doubly unsaturated alkenes in the C31-C39 range were found. Use of principal component analysis (PCA) revealed that the composition of the newly discovered CHC varies significantly between species, sex, and age of the animals. Our study adds to the growing literature on the presence of very long-chain CHC in insects and hints at putative roles in insect communication. Graphical abstract.


Asunto(s)
Hidrocarburos/análisis , Espectrometría de Masas/métodos , Atractivos Sexuales/análisis , Avispas/química , Alquenos/análisis , Escamas de Animales/química , Animales , Femenino , Cromatografía de Gases y Espectrometría de Masas , Masculino , Análisis de Componente Principal
11.
Nature ; 494(7437): 345-8, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23407492

RESUMEN

Sex pheromones play a pivotal role in the communication of many sexually reproducing organisms. Accordingly, speciation is often accompanied by pheromone diversification enabling proper mate finding and recognition. Current theory implies that chemical signals are under stabilizing selection by the receivers who thereby maintain the integrity of the signals. How the tremendous diversity of sex pheromones seen today evolved is poorly understood. Here we unravel the genetics of a newly evolved pheromone phenotype in wasps and present results from behavioural experiments indicating how the evolution of a new pheromone component occurred in an established sender-receiver system. We show that male Nasonia vitripennis evolved an additional pheromone compound differing only in its stereochemistry from a pre-existing one. Comparative behavioural studies show that conspecific females responded neutrally to the new pheromone phenotype when it evolved. Genetic mapping and gene knockdown show that a cluster of three closely linked genes accounts for the ability to produce this new pheromone phenotype. Our data suggest that new pheromone compounds can persist in a sender's population, without being selected against by the receiver and without the receiver having a pre-existing preference for the new pheromone phenotype, by initially remaining unperceived. Our results thus contribute valuable new insights into the evolutionary mechanisms underlying the diversification of sex pheromones. Furthermore, they indicate that the genetic basis of new pheromone compounds can be simple, allowing them to persist long enough in a population for receivers to evolve chemosensory adaptations for their exploitation.


Asunto(s)
Evolución Biológica , Preferencia en el Apareamiento Animal/fisiología , Atractivos Sexuales/metabolismo , Avispas/genética , Avispas/fisiología , Animales , Femenino , Técnicas de Silenciamiento del Gen , Especiación Genética , Lactonas/química , Lactonas/metabolismo , Masculino , Datos de Secuencia Molecular , Filogenia , Quinazolinas/química , Quinazolinas/metabolismo , Selección Genética , Atractivos Sexuales/química , Especificidad de la Especie , Avispas/química
12.
Mol Biol Evol ; 32(2): 456-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25425561

RESUMEN

Desaturase genes are essential for biological processes, including lipid metabolism, cell signaling, and membrane fluidity regulation. Insect desaturases are particularly interesting for their role in chemical communication, and potential contribution to speciation, symbioses, and sociality. Here, we describe the acyl-CoA desaturase gene families of 15 insects, with a focus on social Hymenoptera. Phylogenetic reconstruction revealed that the insect desaturases represent an ancient gene family characterized by eight subfamilies that differ strongly in their degree of conservation and frequency of gene gain and loss. Analyses of genomic organization showed that five of these subfamilies are represented in a highly microsyntenic region conserved across holometabolous insect taxa, indicating an ancestral expansion during early insect evolution. In three subfamilies, ants exhibit particularly large expansions of genes. Despite these expansions, however, selection analyses showed that desaturase genes in all insect lineages are predominantly undergoing strong purifying selection. Finally, for three expanded subfamilies, we show that ants exhibit variation in gene expression between species, and more importantly, between sexes and castes within species. This suggests functional differentiation of these genes and a role in the regulation of reproductive division of labor in ants. The dynamic pattern of gene gain and loss of acyl-CoA desaturases in ants may reflect changes in response to ecological diversification and an increased demand for chemical signal variability. This may provide an example of how gene family expansions can contribute to lineage-specific adaptations through structural and regulatory changes acting in concert to produce new adaptive phenotypes.


Asunto(s)
Ácido Graso Desaturasas/genética , Himenópteros/enzimología , Proteínas de Insectos/genética , Animales , Evolución Molecular , Duplicación de Gen/genética
13.
Genome Res ; 23(8): 1235-47, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23636946

RESUMEN

Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor-binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the "socio-genomes" of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations.


Asunto(s)
Hormigas/genética , Genoma de los Insectos , Animales , Conducta Animal , Sitios de Unión , Secuencia Conservada , Metilación de ADN , Evolución Molecular , Regulación de la Expresión Génica , Himenópteros/genética , Proteínas de Insectos/genética , MicroARNs/genética , Modelos Genéticos , Filogenia , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ADN , Conducta Social , Especificidad de la Especie , Sintenía , Factores de Transcripción/genética
14.
Mol Ecol ; 25(15): 3716-30, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27178446

RESUMEN

A key requirement for social cooperation is the mitigation and/or social regulation of aggression towards other group members. Populations of the harvester ant Pogonomyrmex californicus show the alternate social phenotypes of queens founding nests alone (haplometrosis) or in groups of unrelated yet cooperative individuals (pleometrosis). Pleometrotic queens display an associated reduction in aggression. To understand the proximate drivers behind this variation, we placed foundresses of the two populations into social environments with queens from the same or the alternate population, and measured their behaviour and head gene expression profiles. A proportion of queens from both populations behaved aggressively, but haplometrotic queens were significantly more likely to perform aggressive acts, and conflict escalated more frequently in pairs of haplometrotic queens. Whole-head RNA sequencing revealed variation in gene expression patterns, with the two populations showing moderate differentiation in overall transcriptional profile, suggesting that genetic differences underlie the two founding strategies. The largest detected difference, however, was associated with aggression, regardless of queen founding type. Several modules of coregulated genes, involved in metabolism, immune system and neuronal function, were found to be upregulated in highly aggressive queens. Conversely, nonaggressive queens exhibited a striking pattern of upregulation in chemosensory genes. Our results highlight that the social phenotypes of cooperative vs. solitary nest founding tap into a set of gene regulatory networks that seem to govern aggression level. We also present a number of highly connected hub genes associated with aggression, providing opportunity to further study the genetic underpinnings of social conflict and tolerance.


Asunto(s)
Agresión , Hormigas/genética , Conducta Animal , Conducta Social , Animales , Hormigas/fisiología , Femenino , Expresión Génica , Fenotipo
15.
Trends Genet ; 28(1): 14-21, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21982512

RESUMEN

Ants (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants makes them excellent model organisms to study the evolution of social systems. Comparing the ant genomes with those of the honeybee, a lineage that evolved eusociality independently from ants, and solitary insects suggests that there are significant differences in key aspects of genome organization between social and solitary insects, as well as among ant species. Altogether, these seven ant genomes open exciting new research avenues and opportunities for understanding the genetic basis and regulation of social species, and adaptive complex systems in general.


Asunto(s)
Hormigas/genética , Evolución Molecular , Genoma de los Insectos , Conducta Social , Animales , Hormigas/clasificación , Hormigas/fisiología , Humanos , Filogenia , Factores de Tiempo
16.
PLoS Genet ; 7(2): e1002007, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21347285

RESUMEN

Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host-microbe symbioses.


Asunto(s)
Hormigas/fisiología , Genoma de los Insectos/genética , Hojas de la Planta/fisiología , Simbiosis , Animales , Hormigas/genética , Arginina/genética , Arginina/metabolismo , Secuencia de Bases , Hongos/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Análisis de Secuencia de ADN , Serina Proteasas/genética , Serina Proteasas/metabolismo
17.
Proc Natl Acad Sci U S A ; 108(14): 5673-8, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21282631

RESUMEN

Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.


Asunto(s)
Hormigas/genética , Genoma de los Insectos/genética , Genómica/métodos , Filogenia , Animales , Hormigas/fisiología , Secuencia de Bases , California , Metilación de ADN , Biblioteca de Genes , Genética de Población , Jerarquia Social , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Receptores Odorantes/genética , Análisis de Secuencia de ADN
18.
Proc Natl Acad Sci U S A ; 108(14): 5667-72, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21282651

RESUMEN

We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.


Asunto(s)
Hormigas/genética , Redes Reguladoras de Genes/genética , Genoma de los Insectos/genética , Genómica/métodos , Filogenia , Animales , Hormigas/fisiología , Secuencia de Bases , Clima Desértico , Jerarquia Social , Datos de Secuencia Molecular , América del Norte , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Receptores Odorantes/genética , Análisis de Secuencia de ADN
19.
Biol Methods Protoc ; 9(1): bpae050, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050818

RESUMEN

Transposable elements (TEs) are found in virtually every eukaryotic genome and are important for generating de novo genetic variation. However, outside of costly and time-consuming whole-genome sequencing approaches, the set of available methods to study TE polymorphisms in non-model species is very limited. The Transposon Display (TD) is a simple yet effective technique to characterize polymorphisms across samples by identifying amplified fragment length polymorphisms using primers targeting specific TE families. So far, this technique has almost exclusively been used in plants. Here, we present an optimized TD protocol for insect species with small genomes such as ants (ca. 200-600 Mb). We characterized TE polymorphisms between two distinct genetic lineages of the invasive ant Cardiocondyla obscurior, as well as between neighboring populations of the New World lineage. We found active LTR/Ty3 retrotransposons, that contributed to the genetic diversification of populations in this species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA