Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Genes Dev ; 25(13): 1399-411, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21724832

RESUMEN

Blood vessel networks are typically formed by angiogenesis, a process in which new vessels form by sprouting of endothelial cells from pre-existing vessels. This process is initiated by vascular endothelial growth factor (VEGF)-mediated tip cell selection and subsequent angiogenic sprouting. Surprisingly, we found that VEGF directly controls the expression of Plexin-D1, the receptor for the traditional repulsive axon guidance cue, semaphorin 3E (Sema3E). Sema3E-Plexin-D1 signaling then negatively regulates the activity of the VEGF-induced Delta-like 4 (Dll4)-Notch signaling pathway, which controls the cell fate decision between tip and stalk cells. Using the mouse retina as a model system, we show that Plexin-D1 is selectively expressed in endothelial cells at the front of actively sprouting blood vessels and its expression is tightly controlled by VEGF secreted by surrounding tissues. Therefore, although the Sema3E secreted by retinal neurons is evenly distributed throughout the retina, Sema3E-Plexin-D1 signaling is spatially controlled by VEGF through its regulation of Plexin-D1. Moreover, we show that gain and loss of function of Sema3E and Plexin-D1 disrupts normal Dll4 expression, Notch activity, and tip/stalk cell distribution in the retinal vasculature. Finally, the retinal vasculature of mice lacking sema3E or plexin-D1 has an uneven growing front, a less-branched vascular network, and abnormal distribution of dll4-positive cells. Lowering Notch activity in the mutant mice can reverse this defect, solidifying the observation that Dll4-Notch signaling is regulated by Sema3E-Plexin-D1 and is required for its function in vivo. Together, these data reveal a novel role of Sema3E-Plexin-D1 function in modulating angiogenesis via a VEGF-induced feedback mechanism.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Retroalimentación Fisiológica/fisiología , Regulación del Desarrollo de la Expresión Génica , Neovascularización Fisiológica/fisiología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Línea Celular , Células Endoteliales/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Neovascularización Fisiológica/genética , Proteínas del Tejido Nervioso , Fenotipo , Receptores Notch/metabolismo , Retina/citología , Retina/embriología , Células Ganglionares de la Retina/metabolismo , Semaforinas/genética , Semaforinas/metabolismo
2.
Genes Cells ; 20(9): 706-19, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26243725

RESUMEN

In addition to its well-established role during immune system function, NF-κB regulates cell survival and synaptic plasticity in the mature nervous system. Here, we show that during mouse brain development, NF-κB activity is present in the neocortical ventricular and subventricular zones (VZ and SVZ), where it regulates proliferative pool maintenance. Activation of NF-κB signaling, by expression of p65 or an activated form of the IκB kinase complex subunit IKK2, inhibited neuronal differentiation and promoted retention of progenitors in the VZ and SVZ. In contrast, blockade of the pathway with dominant negative forms of IKK2 and IκBα promoted neuronal differentiation both in vivo and in vitro. Furthermore, by modulating both the NF-κB and Notch pathways, we show that in the absence of canonical Notch activity, after knockdown of the pathway effector CBF1, NF-κB signaling promoted Tbr2 expression and intermediate neural progenitor fate. Interestingly, however, activation of NF-κB in vivo, with canonical Notch signaling intact, promoted expression of the radial glial marker Pax6. This work identifies NF-κB signaling as a regulator of neocortical neurogenesis and suggests that the pathway plays roles in both the VZ and SVZ.


Asunto(s)
FN-kappa B/metabolismo , Neocórtex/crecimiento & desarrollo , Neurogénesis , Transducción de Señal , Animales , Proteínas del Ojo/metabolismo , Femenino , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Neocórtex/citología , Células-Madre Neurales/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo
3.
Hippocampus ; 25(5): 670-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25515406

RESUMEN

Activation of the Notch pathway in neurons is essential for learning and memory in various species from invertebrates to mammals. However, it remains unclear how Notch signaling regulates neuronal plasticity, and whether the transcriptional regulator and canonical pathway effector RBP-J plays a role. Here, we report that conditional disruption of RBP-J in the postnatal hippocampus leads to defects in long-term potentiation, long-term depression, and in learning and memory. Using gene expression profiling and chromatin immunoprecipitation, we identified two GABA transporters, GAT2 and BGT1, as putative Notch/RBP-J pathway targets, which may function downstream of RBP-J to limit the accumulation of GABA in the Schaffer collateral pathway. Our results reveal an essential role for canonical Notch/RBP-J signaling in hippocampal synaptic plasticity and suggest that role, at least in part, is mediated by the regulation of GABAergic signaling.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Hipocampo/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Plasticidad Neuronal/fisiología , Receptores Notch/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones Noqueados , Transducción de Señal , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/metabolismo
4.
Circ Res ; 108(1): 51-9, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21106942

RESUMEN

RATIONALE: Transgenic Notch reporter mice express enhanced green fluorescent protein in cells with C-promoter binding factor-1 response element transcriptional activity (CBF1-RE(x)4-EGFP), providing a unique and powerful tool for identifying and isolating "Notch-activated" progenitors. OBJECTIVE: We asked whether, as in other tissues of this mouse, EGFP localized and functionally tagged adult cardiac tissue progenitors, and, if so, whether this cell-based signal could serve as a quantitative and qualitative biosensor of the injury repair response of the heart. METHODS AND RESULTS: In addition to scattered endothelial and interstitial cells, Notch-activated (EGFP(+)) cells unexpectedly richly populated the adult epicardium. We used fluorescence-activated cell sorting to isolate EGFP(+) cells and excluded hematopoietic (CD45(+)) and endothelial (CD31(+)) subsets. We analyzed EGFP(+)/CD45⁻/CD31⁻ cells, a small (<2%) but distinct subpopulation, by gene expression profiling and functional analyses. We called this mixed cell pool, which had dual multipotent stromal cell and epicardial lineage signatures, Notch-activated epicardial-derived cells (NECs). Myocardial infarction and thoracic aortic banding amplified the NEC pool, increasing fibroblast differentiation. Validating the functional vitality of clonal NEC lines, serum growth factors triggered epithelial-mesenchymal transition and the immobilized Notch ligand Delta-like 1-activated downstream target genes. Moreover, cardiomyocyte coculture and engraftment in NOD-SCID (nonobese diabetic-severe combined immunodeficiency) mouse myocardium increased cardiac gene expression in NECs. CONCLUSIONS: A dynamic Notch injury response activates adult epicardium, producing a multipotent cell population that contributes to fibrosis repair.


Asunto(s)
Células Madre Multipotentes/metabolismo , Infarto del Miocardio/metabolismo , Pericardio/metabolismo , Receptores Notch/metabolismo , Animales , Proteínas de Unión al Calcio , Fibrosis , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Antígenos Comunes de Leucocito , Ratones , Ratones Transgénicos , Células Madre Multipotentes/patología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Pericardio/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Receptores Notch/genética
5.
Nature ; 449(7160): 351-5, 2007 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-17721509

RESUMEN

During brain development, neurons and glia are generated from a germinal zone containing both neural stem cells (NSCs) and more limited intermediate neural progenitors (INPs). The signalling events that distinguish between these two proliferative neural cell types remain poorly understood. The Notch signalling pathway is known to maintain NSC character and to inhibit neurogenesis, although little is known about the role of Notch signalling in INPs. Here we show that both NSCs and INPs respond to Notch receptor activation, but that NSCs signal through the canonical Notch effector C-promoter binding factor 1 (CBF1), whereas INPs have attenuated CBF1 signalling. Furthermore, whereas knockdown of CBF1 promotes the conversion of NSCs to INPs, activation of CBF1 is insufficient to convert INPs back to NSCs. Using both transgenic and transient in vivo reporter assays we show that NSCs and INPs coexist in the telencephalic ventricular zone and that they can be prospectively separated on the basis of CBF1 activity. Furthermore, using in vivo transplantation we show that whereas NSCs generate neurons, astrocytes and oligodendrocytes at similar frequencies, INPs are predominantly neurogenic. Together with previous work on haematopoietic stem cells, this study suggests that the use or blockade of the CBF1 cascade downstream of Notch is a general feature distinguishing stem cells from more limited progenitors in a variety of tissues.


Asunto(s)
Neuronas/citología , Neuronas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/deficiencia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células Cultivadas , Proteínas Fluorescentes Verdes/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas , Ratones , Telencéfalo/metabolismo
6.
Nature ; 445(7129): 776-80, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17259973

RESUMEN

In sprouting angiogenesis, specialized endothelial tip cells lead the outgrowth of blood-vessel sprouts towards gradients of vascular endothelial growth factor (VEGF)-A. VEGF-A is also essential for the induction of endothelial tip cells, but it is not known how single tip cells are selected to lead each vessel sprout, and how tip-cell numbers are determined. Here we present evidence that delta-like 4 (Dll4)-Notch1 signalling regulates the formation of appropriate numbers of tip cells to control vessel sprouting and branching in the mouse retina. We show that inhibition of Notch signalling using gamma-secretase inhibitors, genetic inactivation of one allele of the endothelial Notch ligand Dll4, or endothelial-specific genetic deletion of Notch1, all promote increased numbers of tip cells. Conversely, activation of Notch by a soluble jagged1 peptide leads to fewer tip cells and vessel branches. Dll4 and reporters of Notch signalling are distributed in a mosaic pattern among endothelial cells of actively sprouting retinal vessels. At this location, Notch1-deleted endothelial cells preferentially assume tip-cell characteristics. Together, our results suggest that Dll4-Notch1 signalling between the endothelial cells within the angiogenic sprout serves to restrict tip-cell formation in response to VEGF, thereby establishing the adequate ratio between tip and stalk cells required for correct sprouting and branching patterns. This model offers an explanation for the dose-dependency and haploinsufficiency of the Dll4 gene, and indicates that modulators of Dll4 or Notch signalling, such as gamma-secretase inhibitors developed for Alzheimer's disease, might find usage as pharmacological regulators of angiogenesis.


Asunto(s)
Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica/fisiología , Receptor Notch1/metabolismo , Transducción de Señal , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/deficiencia , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Receptor Notch1/deficiencia , Retina/citología , Retina/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Biochem Biophys Res Commun ; 404(1): 133-8, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21108929

RESUMEN

Notch signaling pathway enhances neural stem cell characters and regulates cell fate decisions during neural development. Interestingly, besides Notch, other γ-secretase substrates such as APP, LRP2, and ErbB4 have also proven to have biological functions in neural development. We designed a unique experimental setting, combining gain-of- (expression of Notch intracellular domain, NICD) and loss-of-function (γ-secretase inhibition) methods, and were able to examine the function of Notch alone by excluding the activity of other γ-secretase substrates. Here, we show that the frequency and size of neurospheres generated from embryonic neural stem cells (NSCs) significantly decreased by 62.7% and 37.2%, respectively, in the presence of γ-secretase inhibitor even when NICD was expressed. Under the condition of differentiation, however, the γ-secretase inhibitor treatment did not influence the promotion of astrogenesis at the expense of neurogenesis by NICD. These results indicate that other γ-secretase substrate(s) along with Notch are important in the maintenance of the stemness of NSCs, but that Notch alone can sufficiently inhibit neurogenesis without the action of the other γ-secretase substrates during differentiation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Receptor Notch1/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Astrocitos/citología , Astrocitos/fisiología , Carbamatos/farmacología , Dipéptidos/farmacología , Femenino , Ratones , Ratones Endogámicos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Receptor Notch1/genética , Activación Transcripcional
8.
Stroke ; 41(10 Suppl): S64-71, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20876509

RESUMEN

BACKGROUND AND PURPOSE: Notch receptors (1-4) are membrane proteins that, on ligand stilumation, release their cytoplasmic domains to serve as transcription factors. Notch-2 promotes proliferation both during development and cancer, but its role in response to ischemic injury is less well understood. The purpose of this study was to understand whether Notch-2 is induced after neonatal stroke and to investigate its functional relevance. METHODS: P12 CD1 mice were subjected to permanent unilateral (right-sided) double ligation of the common carotid artery. RESULTS: Neonatal ischemia induces a progressive brain injury with prolonged apoptosis and Notch-2 up-regulation. Notch-2 expression was induced shortly after injury in hippocampal areas with elevated c-fos activation and increased cell death. Long-term induction of Notch-2 also occurred in CA1 and CA3 in and around areas of cell death, and had a distinct pattern of expression as compared to Notch-1. In vitro oxygen glucose deprivation treatment showed a similar increase in Notch-2 in apoptotic cells. In vitro gain of function experiments, using an active form of Notch-2, show that Notch-2 induction is neurotoxic to a comparable extent as oxygen glucose deprivation treatment. CONCLUSIONS: These results suggest that Notch-2 up-regulation after neonatal ischemia is detrimental to neuronal survival.


Asunto(s)
Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Receptor Notch2/metabolismo , Accidente Cerebrovascular/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Apoptosis , Western Blotting , Isquemia Encefálica/patología , Recuento de Células , Hipocampo/patología , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratones , Microscopía Fluorescente , Neuronas/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Accidente Cerebrovascular/patología , Factores de Tiempo , Regulación hacia Arriba
9.
Nat Neurosci ; 8(6): 709-15, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15917835

RESUMEN

The Notch pathway, although originally identified in fruit flies, is now among the most heavily studied in mammalian biology. In mice, loss-of-function and gain-of-function work has demonstrated that Notch signaling is essential both during development and in the adult in a multitude of tissues. Prominent among these is the CNS, where Notch has been implicated in processes ranging from neural stem cell regulation to learning and memory. Here we review the role of Notch in the mammalian CNS by focusing specifically on mutations generated in mice. These mutations have provided critical insight into Notch function in the CNS and have led to the identification of promising new directions that are likely to generate important discoveries in the future.


Asunto(s)
Diferenciación Celular/genética , Sistema Nervioso Central/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Malformaciones del Sistema Nervioso/genética , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/metabolismo , Animales , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Humanos , Ratones , Ratones Mutantes/anomalías , Ratones Mutantes/genética , Ratones Mutantes/metabolismo , Mutación/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/fisiopatología , Receptor Notch1 , Receptores de Superficie Celular/genética , Transducción de Señal/genética , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética
11.
J Neurochem ; 106(6): 2272-87, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18819190

RESUMEN

The mammalian telencephalon, which comprises the cerebral cortex, olfactory bulb, hippocampus, basal ganglia, and amygdala, is the most complex and intricate region of the CNS. It is the seat of all higher brain functions including the storage and retrieval of memories, the integration and processing of sensory and motor information, and the regulation of emotion and drive states. In higher mammals such as humans, the telencephalon also governs our creative impulses, ability to make rational decisions, and plan for the future. Despite its massive complexity, exciting work from a number of groups has begun to unravel the developmental mechanisms for the generation of the diverse neural cell types that form the circuitry of the mature telencephalon. Here, we review our current understanding of four aspects of neural development. We first begin by providing a general overview of the broad developmental mechanisms underlying the generation of neuronal and glial cell diversity in the telencephalon during embryonic development. We then focus on development of the cerebral cortex, the most complex and evolved region of the brain. We review the current state of understanding of progenitor cell diversity within the cortical ventricular zone and then describe how lateral signaling via the Notch-Delta pathway generates specific aspects of neural cell diversity in cortical progenitor pools. Finally, we review the signaling mechanisms required for development, and response to injury, of a specialized group of cortical stem cells, the radial glia, which act both as precursors and as migratory scaffolds for newly generated neurons.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Células Madre/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuroglía/citología , Neuronas/citología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Células Madre/citología , Telencéfalo/citología
12.
Dev Neurosci ; 30(5): 306-18, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18073459

RESUMEN

We used loss-of-function analysis to determine the role of fibroblast growth factor receptor 2 (FGFR2) in telencephalic progenitors, and also to examine interactions between FGFR and Notch signaling. While the telencephalon of FGFR2 mutants appears grossly normal, mutant telencephalic progenitors exhibit altered proliferative behavior in vivo and in vitro. Based upon our prior finding that Notch1 activation increased neurosphere frequency in FGF2, we tested whether this effect is mediated by FGFR1 or FGFR2. We found that Notch1 activation increased neurosphere frequency in cells mutant for either FGFR1 or FGFR2, but had no effect on the reduced size of neurospheres mutant for those receptors. Additional analyses revealed biochemical changes in the adult neocortex mutant for the IIIc isoform of FGFR2, and essential roles for FGFR2 in nasopharynx, eyelid, and cornea development.


Asunto(s)
Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Células Madre/fisiología , Telencéfalo , Animales , Biomarcadores/metabolismo , Proliferación Celular , Células Cultivadas , Córnea/crecimiento & desarrollo , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Párpados/crecimiento & desarrollo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Noqueados , Nasofaringe/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Células Madre/citología , Telencéfalo/citología , Telencéfalo/metabolismo
13.
Curr Opin Neurobiol ; 15(1): 29-33, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15721741

RESUMEN

Cells with radial morphology in the developing brain were first identified more than 100 years ago. These cells, later termed radial glia, have been studied primarily as migratory scaffolds and glial progenitors. However, it has become increasingly clear, on the basis of in vitro studies and more recent in vivo fate mapping experiments, that radial glia also generate neurons during embryonic development. Now the challenge will be to understand the signaling events that regulate the spatial and temporal heterogeneity of these cells and their developmental potential. Recent work has identified the Notch, ErbB, and fibroblast growth factor signaling pathways as central to the regulation of radial 'glial' progenitors.


Asunto(s)
Neuroglía/citología , Neuronas/citología , Neuronas/fisiología , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/fisiología , Animales , Humanos , Neuroglía/fisiología
14.
J Neurosci ; 24(43): 9497-506, 2004 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-15509736

RESUMEN

The Notch and fibroblast growth factor (FGF) pathways both regulate cell fate specification during mammalian neural development. We have shown previously that Notch1 activation in the murine forebrain promotes radial glial identity. This result, together with recent evidence that radial glia can be progenitors, suggested that Notch1 signaling might promote progenitor and radial glial character simultaneously. Consistent with this idea, we found that in addition to promoting radial glial character in vivo, activated Notch1 (ActN1) increased the frequency of embryonic day 14.5 (E14.5) ganglionic eminence (GE) progenitors that grew into neurospheres in FGF2. Constitutive activation of C-promoter binding factor (CBF1), a Notch pathway effector, also increased neurosphere frequency in FGF2, suggesting that the effect of Notch1 on FGF responsiveness is mediated by CBF1. The observation that ActN1 promoted FGF responsiveness in telencephalic progenitors prompted us to examine the effect of FGF pathway activation in vivo. We focused on FGFR2 because it is expressed in radial glia in the GEs where ActN1 increases FGF2 neurosphere frequency, but not in the septum where it does not. Like ActN1, activated FGFR2 (ActFGFR2) promoted radial glial character in vivo. However, unlike ActN1, ActFGFR2 did not enhance neurosphere frequency at E14.5. Additional analysis demonstrated that, unexpectedly, neither ActFGFR2 nor ActFGFR1 could replace the need for ligand in promoting neurosphere proliferation. This study suggests that telencephalic progenitors with radial glial morphology are maintained by interactions between the Notch and FGF pathways, and that the mechanisms by which FGF signaling promotes radial glial character in vivo and progenitor proliferation in vitro can be uncoupled.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/fisiología , Neuroglía/fisiología , Receptores de Superficie Celular/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología , Telencéfalo/embriología , Factores de Transcripción/fisiología , Animales , Proliferación Celular , Proteínas de Unión al ADN/fisiología , Factor de Crecimiento Epidérmico/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Receptor Notch1 , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Proteínas Recombinantes de Fusión , Telencéfalo/citología , Telencéfalo/metabolismo
16.
Dev Cell ; 22(4): 707-20, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22445366

RESUMEN

Regulation of self-renewal and differentiation of neural stem cells is still poorly understood. Here we investigate the role of a developmentally expressed protein, Botch, which blocks Notch, in neocortical development. Downregulation of Botch in vivo leads to cellular retention in the ventricular and subventricular zones, whereas overexpression of Botch drives neural stem cells into the intermediate zone and cortical plate. In vitro neurosphere and differentiation assays indicate that Botch regulates neurogenesis by promoting neuronal differentiation. Botch prevents cell surface presentation of Notch by inhibiting the S1 furin-like cleavage of Notch, maintaining Notch in the immature full-length form. Understanding the function of Botch expands our knowledge regarding both the regulation of Notch signaling and the complex signaling mediating neuronal development.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Células-Madre Neurales/citología , Neurogénesis/fisiología , Fármacos Neuroprotectores/metabolismo , Receptores Notch/antagonistas & inhibidores , Receptores Notch/metabolismo , Animales , Western Blotting , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Células Cultivadas , Embrión de Mamíferos/citología , Aparato de Golgi/metabolismo , Humanos , Inmunoprecipitación , Ratones , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/genética , Transducción de Señal , gamma-Glutamilciclotransferasa
17.
Cancer Cell ; 21(5): 626-641, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22624713

RESUMEN

Basal-like breast cancers (BLBC) express a luminal progenitor gene signature. Notch receptor signaling promotes luminal cell fate specification in the mammary gland, while suppressing stem cell self-renewal. Here we show that deletion of Lfng, a sugar transferase that prevents Notch activation by Jagged ligands, enhances stem/progenitor cell proliferation. Mammary-specific deletion of Lfng induces basal-like and claudin-low tumors with accumulation of Notch intracellular domain fragments, increased expression of proliferation-associated Notch targets, amplification of the Met/Caveolin locus, and elevated Met and Igf-1R signaling. Human BL breast tumors, commonly associated with JAGGED expression, elevated MET signaling, and CAVEOLIN accumulation, express low levels of LFNG. Thus, reduced LFNG expression facilitates JAG/NOTCH luminal progenitor signaling and cooperates with MET/CAVEOLIN basal-type signaling to promote BLBC.


Asunto(s)
Neoplasias de la Mama/enzimología , Caveolinas/metabolismo , Transformación Celular Neoplásica/metabolismo , Glicosiltransferasas/metabolismo , Glándulas Mamarias Animales/enzimología , Neoplasias Mamarias Experimentales/enzimología , Células Madre Neoplásicas/enzimología , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Unión al Calcio/metabolismo , Caveolinas/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células Cultivadas , Claudinas/metabolismo , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glicosiltransferasas/deficiencia , Glicosiltransferasas/genética , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/trasplante , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Persona de Mediana Edad , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/trasplante , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas c-met/genética , Receptor IGF Tipo 1/metabolismo , Receptores Notch/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal
18.
Neuron ; 69(5): 840-55, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21382546

RESUMEN

The Notch pathway is prominent among those known to regulate neural development in vertebrates. Notch receptor activation can inhibit neurogenesis, maintain neural progenitor character, and in some contexts promote gliogenesis and drive binary fate choices. Recently, a wave of exciting studies has emerged, which has both solidified previously held assertions and expanded our understanding of Notch function during neurogenesis and in the adult brain. These studies have examined pathway regulators and interactions, as well as pathway dynamics, with respect to both gene expression and cell-cell signaling. Here, focusing primarily on vertebrates, we review the current literature on Notch signaling in the nervous system, and highlight numerous recent studies that have generated interesting and unexpected advances.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso/metabolismo , Neuronas/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales
19.
Cancer Res ; 71(3): 1115-25, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245095

RESUMEN

Although Notch signaling has been widely implicated in neoplastic growth, direct evidence for in vivo initiation of neoplasia by the pathway in murine models has been limited to tumors of lymphoid, breast, and choroid plexus cells. To examine tumorigenic potential in the eye and brain, we injected retroviruses encoding activated forms of Notch1, Notch2, or Notch3 into embryonic mice. Interestingly, the majority of animals infected with active Notch3 developed proliferative lesions comprised of pigmented ocular choroid cells, retinal and optic nerve glia, and lens epithelium. Notch3-induced lesions in the choroid, retina, and optic nerve were capable of invading adjacent tissues, suggesting that they were malignant tumors. Although Notch3 activation induced choroidal tumors in up to 67% of eyes, Notch1 or Notch2 activation never resulted in such tumors. Active forms of Notch1 and Notch2 did generate a few small proliferative glial nodules in the retina and optic nerve, whereas Notch3 was 10-fold more efficient at generating growths, many of which were large invasive gliomas. Expression of active Notch1/Notch3 chimeric receptors implicated the RBPjk-association molecule and transactivation domains of Notch3 in generating choroidal and glial tumors, respectively. In contrast to our findings in the optic nerve and retina, introduction of active Notch receptors, including Notch3, into the brain never caused glial tumors. Our results highlight the differential ability of Notch receptor paralogs to initiate malignant tumor formation, and suggest that glial precursors of the optic nerve, but not the brain, are susceptible to transformation by Notch3.


Asunto(s)
Glioma/metabolismo , Receptores Notch/metabolismo , Animales , Procesos de Crecimiento Celular/fisiología , Neoplasias de la Coroides/metabolismo , Neoplasias de la Coroides/patología , Glioma/patología , Humanos , Cristalino/patología , Ratones , Neoplasias del Nervio Óptico/metabolismo , Neoplasias del Nervio Óptico/patología , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Receptor Notch3 , Proteínas Recombinantes de Fusión/metabolismo , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Transducción de Señal
20.
Science ; 334(6063): 1706-10, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22116031

RESUMEN

B-type lamins, the major components of the nuclear lamina, are believed to be essential for cell proliferation and survival. We found that mouse embryonic stem cells (ESCs) do not need any lamins for self-renewal and pluripotency. Although genome-wide lamin-B binding profiles correlate with reduced gene expression, such binding is not directly required for gene silencing in ESCs or trophectoderm cells. However, B-type lamins are required for proper organogenesis. Defects in spindle orientation in neural progenitor cells and migration of neurons probably cause brain disorganizations found in lamin-B null mice. Thus, our studies not only disprove several prevailing views of lamin-Bs but also establish a foundation for redefining the function of the nuclear lamina in the context of tissue building and homeostasis.


Asunto(s)
Células Madre Embrionarias/fisiología , Lamina Tipo B/fisiología , Organogénesis , Animales , Tamaño Corporal , Encéfalo/citología , Encéfalo/embriología , Ciclo Celular , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Cromatina/metabolismo , Desarrollo Embrionario , Células Madre Embrionarias/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Masculino , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Neuronas/citología , Lámina Nuclear/fisiología , Tamaño de los Órganos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Regiones Promotoras Genéticas , Huso Acromático/fisiología , Huso Acromático/ultraestructura , Transcripción Genética , Trofoblastos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA