Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Pathol ; 51(7-8): 414-431, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38380881

RESUMEN

Biotherapeutic modalities such as cell therapies, gene therapies, nucleic acids, and proteins are increasingly investigated as disease-modifying treatments for severe and life-threatening neurodegenerative disorders. Such diverse bio-derived test articles are fraught with unique and often unpredictable biological consequences, while guidance regarding nonclinical experimental design, neuropathology evaluation, and interpretation is often limited. This paper summarizes key messages offered during a half-day continuing education course on toxicologic neuropathology of neuro-targeted biotherapeutics. Topics included fundamental neurobiology concepts, pharmacology, frequent toxicological findings, and their interpretation including adversity decisions. Covered biotherapeutic classes included cell therapies, gene editing and gene therapy vectors, nucleic acids, and proteins. If agents are administered directly into the central nervous system, initial screening using hematoxylin and eosin (H&E)-stained sections of currently recommended neural organs (brain [7 levels], spinal cord [3 levels], and sciatic nerve) may need to expand to include other components (e.g., more brain levels, ganglia, and/or additional nerves) and/or special neurohistological procedures to characterize possible neural effects (e.g., cell type-specific markers for reactive glial cells). Scientists who evaluate the safety of novel biologics will find this paper to be a practical reference for preclinical safety testing and risk assessment.


Asunto(s)
Neuropatología , Ácidos Nucleicos , Encéfalo , Médula Espinal , Nervio Ciático
2.
Toxicol Pathol ; 51(5): 278-305, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-38047294

RESUMEN

Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.


Asunto(s)
Ganglios Espinales , Fibras Nerviosas , Animales , Médula Espinal , Biología
3.
Toxicol Pathol ; 50(1): 118-146, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34657529

RESUMEN

Sequencing of the human genome and numerous advances in molecular techniques have launched the era of genetic medicine. Increasingly precise technologies for genetic modification, manufacturing, and administration of pharmaceutical-grade biologics have proved the viability of in vivo gene therapy (GTx) as a therapeutic modality as shown in several thousand clinical trials and recent approval of several GTx products for treating rare diseases and cancers. In recognition of the rapidly advancing knowledge in this field, the regulatory landscape has evolved considerably to maintain appropriate monitoring of safety concerns associated with this modality. Nonetheless, GTx safety assessment remains complex and is designed on a case-by-case basis that is determined by the disease indication and product attributes. This article describes our current understanding of fundamental biological principles and possible procedures (emphasizing those related to toxicology and toxicologic pathology) needed to support research and development of in vivo GTx products. This article is not intended to provide comprehensive guidance on all GTx modalities but instead provides an overview relevant to in vivo GTx generally by utilizing recombinant adeno-associated virus-based GTx-the most common in vivo GTx platform-to exemplify the main points to be considered in nonclinical research and development of GTx products.


Asunto(s)
Dependovirus , Terapia Genética , Dependovirus/genética , Terapia Genética/métodos , Humanos , Políticas , Investigación
4.
Toxicol Pathol ; 50(8): 930-941, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36377245

RESUMEN

This article describes the Society of Toxicologic Pathology's (STP) five recommended ("best") practices for appropriate use of informed (non-blinded) versus masked (blinded) microscopic evaluation in animal toxicity studies intended for regulatory review. (1) Informed microscopic evaluation is the default approach for animal toxicity studies. (2) Masked microscopic evaluation has merit for confirming preliminary diagnoses for target organs and/or defining thresholds ("no observed adverse effect level" and similar values) identified during an initial informed evaluation, addressing focused hypotheses, or satisfying guidance or requests from regulatory agencies. (3) If used as the approach for an animal toxicity study to investigate a specific research question, masking of the initial microscopic evaluation should be limited to withholding only information about the group (control or test article-treated) and dose equivalents. (4) The decision regarding whether or not to perform a masked microscopic evaluation is best made by a toxicologic pathologist with relevant experience. (5) Pathology peer review, performed to verify the microscopic diagnoses and interpretations by the study pathologist, should use an informed evaluation approach. The STP maintains that implementing these five best practices has and will continue to consistently deliver robust microscopic data with high sensitivity for animal toxicity studies intended for regulatory review. Consequently, when conducting animal toxicity studies, the advantages of informed microscopic evaluation for maximizing sensitivity outweigh the perceived advantages of minimizing bias through masked microscopic examination.


Asunto(s)
Patólogos , Revisión por Pares , Animales , Humanos , Microscopía , Nivel sin Efectos Adversos Observados
5.
Regul Toxicol Pharmacol ; 121: 104872, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33485926

RESUMEN

Monoclonal antibodies (mAbs) and mAb derivatives have become mainstay pharmaceutical modalites. A critical assessment is to ascertain the specificity of these molecules prior to human clinical trials. The primary technique for determining specificity has been the immunohistochemistry (IHC)-based "Tissue Cross-Reactivity" (TCR) assay, where the candidate molecule is applied to > 30 tissues to look for unexpected staining. In the last few years, however, non-IHC array-based platforms have emerged that allow for screening 75-80% of the human membrane proteome, indicating a viable alternative and/or addition to the IHC methods. The preclinical sciences subcommittee of the Biotechnology Innovation Organization (BIO), "BioSafe", conducted a survey of 26 BIO member companies to understand current sponsor experience with the IHC and array techniques. In the last ten years, respondents noted they have conducted more than 650 IHC TCR assays, largely on full length mAbs, with varying impacts on programs. Protein/cell arrays have been utilized by almost half of the companies and sponsors are gaining familiarity and comfort with the platform. Initial experience with recent versions of these arrays has been largely positive. While most sponsors are not prepared to eliminate the IHC TCR assay, growing experience with these alternatives allows them to confidently choose other approaches with or without TCR assays.


Asunto(s)
Anticuerpos Monoclonales , Reacciones Cruzadas , Evaluación Preclínica de Medicamentos/métodos , Animales , Biotecnología , Industria Farmacéutica , Humanos , Inmunohistoquímica , Encuestas y Cuestionarios
6.
Toxicol Pathol ; 48(4): 549-559, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32347786

RESUMEN

The Society of Toxicologic Pathology (STP) explored current institutional practices for selecting between non-blinded versus blinded histopathologic evaluation during Good Laboratory Practice (GLP)-compliant, regulatory-type animal toxicity studies using a multi-question survey and STP-wide discussion (held at the 2019 STP annual meeting). Survey responses were received from 107 individuals representing 83 institutions that collectively employ 589 toxicologic pathologists. Most responses came from industry (N = 46, mainly biopharmaceutical or contract research organizations) and consultants (N = 24). For GLP-compliant animal toxicity studies, histopathologic evaluation usually involves initial (primary) non-blinded analysis, with post hoc informal blinded re-examination at the study pathologist's discretion to confirm subtle findings or establish thresholds. Initial blinded histopathologic evaluation sometimes is chosen by study pathologists to test formal hypotheses and/or by sponsors to address non-pathologist expectations about histopathology data objectivity. Current practice is that a blinded histopathologic evaluation is documented only if formal blinding (ie, using slides with coded labels) is employed, using simple statements without detailed methodology in the study protocol (or an amendment) and/or pathology report. Blinding is not an appropriate strategy for the initial histopathologic evaluation performed during pathology peer reviews of GLP-compliant animal toxicity studies. [Box: see text].


Asunto(s)
Pruebas de Toxicidad/métodos , Animales , Animales de Laboratorio , Humanos , Patólogos , Patología/métodos , Revisión por Pares , Proyectos de Investigación , Encuestas y Cuestionarios , Toxicología/métodos
7.
Nature ; 504(7480): 437-40, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24226772

RESUMEN

Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic ß-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales , Animales , Glucemia/metabolismo , Proteínas Portadoras/metabolismo , Núcleo Celular/enzimología , Cristalografía por Rayos X , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/enzimología , Modelos Animales de Enfermedad , Hepatocitos , Humanos , Hiperglucemia/sangre , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/enzimología , Hipoglucemiantes/química , Hígado/citología , Hígado/enzimología , Hígado/metabolismo , Masculino , Modelos Moleculares , Especificidad de Órganos , Fosforilación/efectos de los fármacos , Piperazinas/química , Piperazinas/metabolismo , Piperazinas/farmacología , Piperazinas/uso terapéutico , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Wistar , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico
8.
Mol Ther Methods Clin Dev ; 29: 286-302, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37359415

RESUMEN

Mucopolysaccharidosis II (MPS II) is a rare lysosomal storage disease characterized by deficient activity of iduronate-2-sulfatase (I2S), leading to pathological accumulation of glycosaminoglycans (GAGs) in tissues. We used iduronate-2-sulfatase knockout (Ids KO) mice to investigate if liver-directed recombinant adeno-associated virus vectors (rAAV8-LSP-hIDSco) encoding human I2S (hI2S) could cross-correct I2S deficiency in Ids KO mouse tissues, and we then assessed the translation of mouse data to non-human primates (NHPs). Treated mice showed sustained hepatic hI2S production, accompanied by normalized GAG levels in somatic tissues (including critical tissues such as heart and lung), indicating systemic cross-correction from liver-secreted hI2S. Brain GAG levels in Ids KO mice were lowered but not normalized; higher doses were required to see improvements in brain histology and neurobehavioral testing. rAAV8-LSP-hIDSco administration in NHPs resulted in sustained hepatic hI2S production and therapeutic hI2S levels in cross-corrected somatic tissues but no hI2S exposure in the central nervous system, perhaps owing to lower levels of liver transduction in NHPs than in mice. Overall, we demonstrate the ability of rAAV8-LSP-hIDSco to cross-correct I2S deficiency in mouse somatic tissues and highlight the importance of showing translatability of gene therapy data from rodents to NHPs, which is critical for supporting translation to clinical development.

9.
Vet Pathol ; 48(5): 1041-3, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21865606

RESUMEN

Collectively, these presentations introduced the audience to the roles of ES cells in generating phenotypes of transgenic animals,and they provided examples where the GEMs were used to define molecular mechanisms of disease or where ES cells were used as a therapeutic modality. Points of discussion among audience members reinforced the importance of strain-associated background lesions in animal models, technological advances in imaging functional biology, opportunities for stem cell therapies, and ubiquitination in regulation of cell proliferation. The 2012 American College of Veterinary Pathologists symposium ''Evolutionary Aspects of Animal Models'' will focus on the proper selection of a relevant animal model in biomedical research as critical to investigative success. Recent work characterizing rapid evolutionary changes and differences in physiology between species questions the validity of some comparative models. Dr. Robert Hamlin will be speaking on cardiovascular disease in ''Animals as Models of Human Cardiovascular Disease: Or the Search to Overcome Outdated Evolutionary Homeostatic Mechanisms.'' Dr. Stefan Niewiesk will discuss evolutionary factors that affect modeling the human immune system in ''Of Mice and Men: Evolutionarily, What Are the Best Rodent Models of the Human Immune System for Infectious Disease Research?'' Dr. Steven Austad will consider evolution in ''Evolutionary Aspects of Animal Models of Aging.''Finally, Dr. Elizabeth Uhl will conclude the session with ''Modeling Disease Phenotypes: How an Evolutionary Perspective Enhances the Questions.''


Asunto(s)
Animales Modificados Genéticamente/genética , Células Madre Embrionarias/trasplante , Trasplante de Células Madre/métodos , Animales , Ratones , Fenotipo
10.
Toxicol Pathol ; 38(7): 1138-66, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20926828

RESUMEN

Tissue cross-reactivity (TCR) studies are screening assays recommended for antibody and antibody-like molecules that contain a complementarity-determining region (CDR), primarily to identify off-target binding and, secondarily, to identify sites of on-target binding that were not previously identified. At the present time, TCR studies involve the ex vivo immunohistochemical (IHC) staining of a panel of frozen tissues from humans and animals, are conducted prior to dosing humans, and results are filed with the initial IND/CTA to support first-in-human clinical trials. In some cases, a robust TCR assay cannot be developed, and in these cases the lack of a TCR assay should not prevent a program from moving forward. The TCR assay by itself has variable correlation with toxicity or efficacy. Therefore, any findings of interest should be further evaluated and interpreted in the context of the overall pharmacology and safety assessment data package. TCR studies are generally not recommended for surrogate molecules or for comparability assessments in the context of manufacturing/cell line changes. Overall, the design, implementation, and interpretation of TCR studies should follow a case-by-case approach.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Reacciones Cruzadas/inmunología , Evaluación Preclínica de Medicamentos/métodos , Animales , Anticuerpos Monoclonales/farmacología , Sitios de Unión de Anticuerpos , Diseño de Fármacos , Descubrimiento de Drogas , Humanos , Inmunohistoquímica/métodos
11.
J Am Soc Nephrol ; 20(2): 267-77, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19092124

RESUMEN

Administration of activated protein C (APC) protects from renal dysfunction, but the underlying mechanism is unknown. APC exerts both antithrombotic and cytoprotective properties, the latter via modulation of protease-activated receptor-1 (PAR-1) signaling. We generated APC variants to study the relative importance of the two functions of APC in a model of LPS-induced renal microvascular dysfunction. Compared with wild-type APC, the K193E variant exhibited impaired anticoagulant activity but retained the ability to mediate PAR-1-dependent signaling. In contrast, the L8W variant retained anticoagulant activity but lost its ability to modulate PAR-1. By administering wild-type APC or these mutants in a rat model of LPS-induced injury, we found that the PAR-1 agonism, but not the anticoagulant function of APC, reversed LPS-induced systemic hypotension. In contrast, both functions of APC played a role in reversing LPS-induced decreases in renal blood flow and volume, although the effects on PAR-1-dependent signaling were more potent. Regarding potential mechanisms for these findings, APC-mediated PAR-1 agonism suppressed LPS-induced increases in the vasoactive peptide adrenomedullin and infiltration of iNOS-positive leukocytes into renal tissue. However, the anticoagulant function of APC was responsible for suppressing LPS-induced stimulation of the proinflammatory mediators ACE-1, IL-6, and IL-18, perhaps accounting for its ability to modulate renal hemodynamics. Both variants reduced active caspase-3 and abrogated LPS-induced renal dysfunction and pathology. We conclude that although PAR-1 agonism is solely responsible for APC-mediated improvement in systemic hemodynamics, both functions of APC play distinct roles in attenuating the response to injury in the kidney.


Asunto(s)
Enfermedades Renales/metabolismo , Riñón/lesiones , Proteína C/fisiología , Animales , Humanos , Inflamación , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Riñón/metabolismo , Lipopolisacáridos/metabolismo , Masculino , Microcirculación , Proteína C/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor PAR-1/metabolismo , Transducción de Señal
12.
J Clin Invest ; 115(6): 1627-35, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15902306

RESUMEN

Diabetes mellitus is a major health concern, affecting more than 5% of the population. Here we describe a potential novel therapeutic agent for this disease, FGF-21, which was discovered to be a potent regulator of glucose uptake in mouse 3T3-L1 and primary human adipocytes. FGF-21-transgenic mice were viable and resistant to diet-induced obesity. Therapeutic administration of FGF-21 reduced plasma glucose and triglycerides to near normal levels in both ob/ob and db/db mice. These effects persisted for at least 24 hours following the cessation of FGF-21 administration. Importantly, FGF-21 did not induce mitogenicity, hypoglycemia, or weight gain at any dose tested in diabetic or healthy animals or when overexpressed in transgenic mice. Thus, we conclude that FGF-21, which we have identified as a novel metabolic factor, exhibits the therapeutic characteristics necessary for an effective treatment of diabetes.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Factores de Crecimiento de Fibroblastos/administración & dosificación , Hipoglucemiantes/administración & dosificación , Adipocitos/citología , Adipocitos/metabolismo , Animales , Glucemia/análisis , División Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus/sangre , Diabetes Mellitus/patología , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Hiperglucemia/sangre , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperglucemia/patología , Hipoglucemiantes/metabolismo , Ratones , Ratones Obesos , Ratones Transgénicos , Triglicéridos/sangre , Aumento de Peso/efectos de los fármacos , Aumento de Peso/genética
13.
J Pharmacol Exp Ther ; 325(1): 17-26, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18182560

RESUMEN

The protein C (PC) pathway plays an important role in vascular and immune function, and acquired deficiency during sepsis is associated with increased mortality in both animal models and in clinical studies. However, the association of acquired PC deficiency with the pathophysiology of lung injury is unclear. We hypothesized that low PC induced by sepsis would associate with increased pulmonary injury and that replacement with activated protein C (APC) would reverse the activation of pathways associated with injury. Using a cecal ligation and puncture (CLP) model of polymicrobial sepsis, we examined the role of acquired PC deficiency on acute lung injury assessed by analyzing changes in pulmonary pathology, chemokine response, inducible nitric-oxide synthase (iNOS), and the angiotensin pathway. Acquired PC deficiency was strongly associated with an increase in lung inflammation and drivers of pulmonary injury, including angiotensin (Ang) II, thymus and activation-regulated chemokine, plasminogen activator inhibitor (PAI)-1, and iNOS. In contrast, the protective factor angiotensin-converting enzyme (ACE)-2 was significantly suppressed in animals with acquired PC deficiency. The endothelial protein C receptor, required for the cytoprotective signaling of APC, was significantly increased post-CLP, suggesting a compensatory up-regulation of the signaling receptor. Treatment of septic animals with APC reduced pulmonary pathology, suppressed the macrophage inflammatory protein family chemokine response, iNOS expression, and PAI-1 activity and up-regulated ACE-2 expression with concomitant reduction in AngII peptide. These data demonstrate a clear link between acquired PC deficiency and pulmonary inflammatory response in the rat sepsis model and provide support for the concept of APC as a replacement therapy in acute lung injury associated with acquired PC deficiency.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Peptidil-Dipeptidasa A/efectos de los fármacos , Deficiencia de Proteína C/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Sepsis/complicaciones , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Inflamatorias de Macrófagos/genética , Óxido Nítrico Sintasa de Tipo II/genética , Inhibidor 1 de Activador Plasminogénico/genética , Deficiencia de Proteína C/etiología , Ratas
14.
Adv Exp Med Biol ; 614: 83-91, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18290317

RESUMEN

The protein C (PC) pathway plays an important role in vascular function, and acquired deficiency during sepsis is associated with increased mortality. We have explored the role of PC suppression in modulating early inflammatory events in a model of polymicrobial sepsis. We show that increased levels of organ damage and dysfunction are associated with decreased levels of endogenous PC. Notably, animals with low PC had correspondingly high levels of pulmonary iNOS expression, which correlated with chemokines KC/Gro and MIP2, previously shown to predict outcome in this model. Treatment with activated protein C (aPC) not only reduced the pathology score, leukocyte infiltration and markers of organ dysfunction, but also suppressed the induction of iNOS, and the chemokine response (including KC/Gro, MIP2, IP-10, RANTES, GCP-2 and lymphotactin), and increased apoA1. aPC treatment also suppressed the induction of VEGF, a marker recently suggested to play a pathophysiological role in sepsis. These data demonstrate a clear link between low protein C and degree of organ damage and dysfunction in sepsis, as well as the early reversal with aPC treatment. Moreover, our data show a direct role of aPC in broadly modulating monocyte and T-cell chemokines following systemic inflammatory response.


Asunto(s)
Anticoagulantes/uso terapéutico , Quimiocinas/metabolismo , Proteína C/fisiología , Proteína C/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Biomarcadores/sangre , Ciego/cirugía , Modelos Animales de Enfermedad , Inducción Enzimática/efectos de los fármacos , Ligadura , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteína C/genética , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/uso terapéutico , Sepsis/sangre , Sepsis/etiología , Sepsis/patología , Índice de Severidad de la Enfermedad , Estadística como Asunto , Resultado del Tratamiento
15.
Shock ; 28(4): 468-76, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17558353

RESUMEN

Activated protein C (APC) is an important modulator of vascular function that has antithrombotic and anti-inflammatory properties. Studies in humans have shown modulation of endotoxin-induced hypotension by recombinant human APC, drotrecogin alfa (activated), however, the mechanism for this effect is unclear. We have found that APC suppresses the induction of the potent vasoactive peptide adrenomedullin (ADM) and could downregulate lipopolysaccharide (LPS)-induced ADM messenger RNA (mRNA) and nitrite levels in cell culture. This effect was dependent on signaling through protease-activated receptor 1. Addition of 1400W, an irreversible inducible nitric oxide synthase (iNOS) inhibitor, inhibited LPS-induced ADM mRNA, suggesting that ADM induction is NO mediated. Furthermore, in a rat model of endotoxemia, APC (100 microg/kg, i.v.) prevented LPS (10 mg/kg, i.v.)-induced hypotension, and suppressed ADM mRNA and protein expression. APC also inhibited iNOS mRNA and protein levels along with reduction in NO by-products (NOx). We also observed a significant reduction in iNOS-positive leukocytes adhering to vascular endothelium after APC treatment. Moreover, we found that APC inhibited the expression of interferon-gamma (IFN-gamma), a potent activator of iNOS. In a human study of LPS-induced hypotension, APC reduced the upregulation of plasma ADM levels, coincident with protection against the hypotensive response. Overall, we demonstrate that APC blocks the induction of ADM, likely mediated by IFN-gamma and iNOS, and suggests a mechanism that may account for ameliorating LPS-induced hypotension. Furthermore, our data provide a new understanding for the role of APC in modulating vascular response to insult.


Asunto(s)
Adrenomedulina/metabolismo , Hipotensión/prevención & control , Lipopolisacáridos/toxicidad , Proteína C/farmacología , Adrenomedulina/sangre , Adrenomedulina/genética , Animales , Western Blotting , Línea Celular , Movimiento Celular/efectos de los fármacos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Hipotensión/inducido químicamente , Interferón gamma/genética , Interferón gamma/metabolismo , Leucocitos/citología , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/metabolismo , Óxidos de Nitrógeno/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Immunol Lett ; 106(1): 42-7, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16730379

RESUMEN

Death receptor-6 (DR6), a member of the death domain-containing TNFR superfamily, is highly expressed in lymphoid tissues and regulated upon lymphocyte activation. Targeted disruption of DR6 results in enhanced CD4(+) T cell proliferation and T helper 2 (Th2) differentiation in vitro, whereas the in vivo role of DR6 in regulating Th2 cell differentiation and effector function remains largely unknown. In the current study, we used a Th2-skewed allergic airway inflammation model induced by ovalbumin (OVA) sensitization and challenge to compare the inflammatory response in the lung of both wild type (WT) and DR6(-/-) mice. DR6(-/-) mice were protected from the development of airway inflammation as evidenced by attenuated eosinophil accumulation and reduced mucus-producing cells in the lining airways of allergen-challenged animals. Consistent with these observations, a profound reduction of Th2 cytokine production (IL-5 and IL-13) was detected in the bronchoalveolar lavage fluid (BAL). Furthermore, a significant increase in the frequency of IFN-gamma secreting cells was observed in the DR6(-/-) mouse lungs after OVA challenge, which may account for the reduced pulmonary Th2 cytokine production. These data point to a critical role of DR6 in regulating airway inflammation in the OVA-induced mouse model of asthma.


Asunto(s)
Asma/metabolismo , Asma/patología , Hiperreactividad Bronquial/metabolismo , Hiperreactividad Bronquial/patología , Eosinofilia Pulmonar/metabolismo , Eosinofilia Pulmonar/patología , Receptores del Factor de Necrosis Tumoral/metabolismo , Animales , Asma/inducido químicamente , Hiperreactividad Bronquial/inducido químicamente , Citocinas/metabolismo , Modelos Animales de Enfermedad , Interferón gamma/biosíntesis , Ratones , Ratones Noqueados , Moco/metabolismo , Ovalbúmina/farmacología , Eosinofilia Pulmonar/inducido químicamente , Receptores del Factor de Necrosis Tumoral/deficiencia , Receptores del Factor de Necrosis Tumoral/genética , Células Th2/metabolismo
17.
Clin Cancer Res ; 9(15): 5705-13, 2003 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-14654555

RESUMEN

Bone metastasis from primary tumors is a clinically important complication of neoplastic progression. The role of parathyroid hormone-related protein (PTHrP) and transforming growth factor (TGF)-beta1 in this process has been clearly established. The current study describes an in vivo model of 13762 rat mammary carcinoma tumor cell-induced osteolysis in which PTHrP and TGF-beta1 expression is observed. Exposure of in vitro-cultured 13762 cells to doxorubicin, cis-platinum, carboplatin, methotrexate, 5-fluorouracil, paclitaxel, alendronate, risedronate, or pamidronate for 72 h resulted in varying effects on cell proliferation (IC(50) values of 0.005, 0.4, 1.9, >40, 17.9, 0.003, >40, >40, and 33.6 micro M, respectively). Tumor cells were implanted into the intramedullary space of the proximal tibia of rats, and the time course of tumor progression was evaluated using radiographic and microcomputed tomography scanning techniques. Trabecular bone mineral density, cortical bone mineral density, and whole bone mineral density were measured (in mg/cm(3)). In untreated animals, radiographic evidence of osteolysis was evident 7 days after implantation. Trabecular bone mineral density and whole bone mineral density were significantly decreased by 21 days after implantation (48% and 26%, respectively). Bisphosphonates showed broad protective activity against tumor-driven osteolysis, Immunohistochemical evaluation of s.c. and intratibially implanted cells demonstrated the expression of PTHrP and TGF-beta1. The results of this study demonstrate the ability of 13762 rat mammary carcinoma cells to elicit a measurable osteolysis and that bisphosphonates inhibit the tumor-induced bone resorption in this model.


Asunto(s)
Resorción Ósea/prevención & control , Difosfonatos/uso terapéutico , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Animales , Antineoplásicos/toxicidad , Resorción Ósea/etiología , División Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Mamarias Experimentales/complicaciones , Metástasis de la Neoplasia , Osteólisis/etiología , Osteólisis/prevención & control , Proteína Relacionada con la Hormona Paratiroidea/análisis , Proteína Relacionada con la Hormona Paratiroidea/genética , Ratas , Ratas Endogámicas F344 , Factor de Crecimiento Transformador beta/análisis , Factor de Crecimiento Transformador beta/genética
18.
BMC Vet Res ; 1: 7, 2005 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-16259631

RESUMEN

BACKGROUND: We have previously described microscopic and electron microscopic alterations in lymphoid organs of PCV2 inoculated mice as apoptosis. In this study we wanted to investigate the molecular pathogenetic mechanism of PCV2-induced apoptosis. Eight-week old BALB/c mice were either sham inoculated (control mice) or inoculated intraperitoneally (ip) and intranasally (in) with a single (sPCV mice) or multiple (mPCV mice) doses of PCV2. Four control mice and 4 sPCV mice were sacrificed 7, 14, 28 and 42 days post inoculation (PI). All 4 mPCV mice were sacrificed 42 days PI. Following necropsy, immunohistochemistry for caspase 3 and in-situ TUNEL assay were performed on sections of spleen, lymph nodes, thymus and ileum from control, sPCV and mPCV mice. In addition, total RNA was extracted from spleens of control, sPCV and mPCV mice for simultaneous detection and semiquantitation of bcl-2 homologues and various caspase mRNAs using a multiprobe RNase protection assay system. RESULTS: PCV2 replicated and was associated with apoptosis in spleens, lymph nodes and Peyer's patches of infected BALB/c mice. Upregulation of caspase 1, 2, 3, 6, 7, 8, 11 and 12 and upregulation for the transcripts of apoptosis inhibitors bcl-2, bcl-w and bcl-X and apoptosis promoters' bax, bak and bad was detected in spleens of sPCV and mPCV mice, but not control mice. Apoptosis was further confirmed by light and electron microscopic morphology as well as by positive TUNEL assay and detection of activated caspase 3. PCV2 nucleic acid was detected by in-situ hybridization in the nuclei and cytoplasm of such apoptotic cells. CONCLUSION: The data presented here support the hypothesis that PCV2 induces apoptosis mediated through the activation of caspases 8 and 3 in the spleens of infected mice.

19.
Endocrinology ; 143(10): 3994-4006, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12239111

RESUMEN

Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) are two closely related peptides that bind two homologous G protein-coupled receptors, VIP/PACAP receptor 1 (VPAC1R) and VIP/PACAP receptor II (VPAC2R), with equally high affinity. Recent reports suggest that VPAC2R plays a role in circadian rhythm and T cell functions. To further elucidate the functional activities of VPAC2R, we generated VPAC2R-deficient mice by deleting exons VIII-X of the VPAC2R gene. The VPAC2R-deficient mice showed retarded growth and had reduced serum IGF-I levels compared with gender-matched, wild-type siblings. The mutant mice appeared healthy and fertile at a young adult age. However, older male mutant mice exhibited diffuse seminiferous tubular degeneration with hypospermia and reduced fertility rate. The mutant mice appeared to have an increase in insulin sensitivity. VPAC2R-deficient mice had increased lean mass and decreased fat mass with reduced serum leptin levels. Indirect calorimetry experiments showed that the respiratory quotient values immediately following the transition into the dark cycle were significantly higher in male knockout mice for about 4 h. Additionally, male and female VPAC2R-deficient mice presented an increased basal metabolic rate (23% and 10%, respectively) compared with their wild-type siblings. Our results suggest that VPAC2R plays an important role in growth, basal energy expenditure, and male reproductive functions.


Asunto(s)
Metabolismo Basal/fisiología , Crecimiento/fisiología , Receptores de Péptido Intestinal Vasoactivo/fisiología , Secuencia de Aminoácidos/genética , Animales , Composición Corporal , Femenino , Trastornos del Crecimiento/genética , Infertilidad Masculina/genética , Insulina/fisiología , Factor I del Crecimiento Similar a la Insulina/análisis , Leptina/sangre , Masculino , Ratones , Ratones Noqueados/genética , Datos de Secuencia Molecular , Receptores de Péptido Intestinal Vasoactivo/deficiencia , Receptores de Péptido Intestinal Vasoactivo/genética , Receptores de Tipo II del Péptido Intestinal Vasoactivo , Valores de Referencia , Túbulos Seminíferos/patología , Caracteres Sexuales , Recuento de Espermatozoides
20.
Cancer Chemother Pharmacol ; 53(2): 133-40, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14593497

RESUMEN

Angiogenesis plays an important role in tumor growth. Angiogenic growth factors may be useful as biomarkers of antiangiogenic activity since their plasma concentrations correlate with the efficacy of treatments directed toward angiogenic targets. SW2 small-cell lung carcinoma (SCLC), Caki-1 renal cell carcinoma and HCT-116 colon carcinoma tumors produce measurable plasma VEGF, bFGF and TGFbeta in nude mice. Mice bearing these human tumor xenografts were treated orally twice daily with the PKCbeta inhibitor, LY317615 (days 14-30 for SW2 and HCT116, and days 21-39 for Caki-1). Plasma was collected every 3 days from control and treated mice. LY317615 significantly decreased plasma VEGF levels in mice bearing SW2 SCLC and Caki-1 renal cell carcinoma compared to control plasma concentrations beginning 5-7 days after initiating therapy. VEGF plasma levels remained suppressed after termination of LY317615 treatment and for the duration of the study (an additional 2 to 3 weeks). Plasma VEGF levels in mice bearing HCT116 xenografts were not altered by LY317615 treatment and plasma bFGF and TGF-beta were not altered by LY317615 in any of the animals. As shown by CD31 immunohistochemical staining, LY317615 decreased intratumoral vessel density by nearly 40% in all three tumors. Only the Caki-1 tumor responded to single-agent LY317615 therapy with a measurable tumor growth delay. Thus, unexpectedly inhibition of PKCbeta in vivo led to decreased VEGF production that persisted after therapy as well as to decreased intratumoral vessels. Plasma VEGF was a weak marker of response to LY317615, and plasma bFGF and TGFbeta were not markers of LY317615 activity.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neoplasias Experimentales/metabolismo , Factor A de Crecimiento Endotelial Vascular/sangre , Animales , Peso Corporal , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Humanos , Inmunohistoquímica , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/patología , Neovascularización Patológica/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Flujo Sanguíneo Regional , Factor de Crecimiento Transformador beta/biosíntesis , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA