RESUMEN
Mycobacterium abscessus is the most pathogenic species among the predominantly saprophytic fast-growing mycobacteria. This opportunistic human pathogen causes severe infections that are difficult to eradicate. Its ability to survive within the host was described mainly with the rough (R) form of M. abscessus, which is lethal in several animal models. This R form is not present at the very beginning of the disease but appears during the progression and the exacerbation of the mycobacterial infection, by transition from a smooth (S) form. However, we do not know how the S form of M. abscessus colonizes and infects the host to then multiply and cause the disease. In this work, we were able to show the hypersensitivity of fruit flies, Drosophila melanogaster, to intrathoracic infections by the S and R forms of M. abscessus. This allowed us to unravel how the S form resists the innate immune response developed by the fly, both the antimicrobial peptides- and cellular-dependent immune responses. We demonstrate that intracellular M. abscessus was not killed within the infected phagocytic cells, by resisting lysis and caspase-dependent apoptotic cell death of Drosophila infected phagocytes. In mice, in a similar manner, intra-macrophage M. abscessus was not killed when M. abscessus-infected macrophages were lysed by autologous natural killer cells. These results demonstrate the propensity of the S form of M. abscessus to resist the host's innate responses to colonize and multiply within the host.
Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Infecciones por Mycobacterium , Mycobacterium abscessus , Mycobacterium , Animales , Humanos , Ratones , Drosophila melanogaster , Fagocitos/patología , Infecciones por Mycobacterium/microbiología , Drosophila , Infecciones por Mycobacterium no Tuberculosas/microbiologíaRESUMEN
Nassariidae are a group of scavenging, predominantly marine, snails that are diversified on soft bottoms as well as on rocky shores, and are the subject of numerous research papers in ecology, ecotoxicology or paleontology. A weak and/or apparently continuous variation in shell characters has resulted in an intimidating taxonomy, with complex synonymy lists. Over 1320 extant nominal species have been described, of which 442 are currently regarded as valid. Above species level, the state of the art is equally hazy, with four subfamilies and twelve genera currently accepted, and many other names in the graveyard of synonymy. A molecular analysis based on three mitochondrial (COI, 16S, 12S) and two nuclear (28S, H3) markers was conducted. Our dataset includes 218 putative nassariid species, comprising 9 of the 12 valid genera, and 25 nominal genera represented by their type species. The monophyly of the Nassariidae as classically construed is not confirmed. Species of Antillophos, Engoniophos, Phos, Nassaria, Tomlinia and Anentome (formerly considered Buccinidae) are included inside the Nassariidae clade. Within the Nassariinae, the tree unexpectedly demonstrates that species from the Atlantic and the Indo-Pacific form different clades which represent several independent diversification events. Through an integrative approach, the reconstruction of ancestral states was addressed for eight characters supposedly informative for taxonomy. Using numerous fossil calibration points, Nassariidae appear to have originated 120 MYA ago in Atlantic temperate waters during the Lower Cretaceous. Our results have a profound impact on nassariid taxonomy, especially with regard to the validity of subfamily- and genus-level names.
Asunto(s)
Gastrópodos/clasificación , Animales , ADN Mitocondrial/química , ADN Mitocondrial/aislamiento & purificación , ADN Mitocondrial/metabolismo , Gastrópodos/genética , Histonas/genética , Filogenia , ARN Ribosómico 28S/química , ARN Ribosómico 28S/aislamiento & purificación , ARN Ribosómico 28S/metabolismo , Análisis de Secuencia de ADNRESUMEN
The genus Clea from SE Asia is from one of only two unrelated families among the megadiverse predatory marine Neogastropoda to have successfully conquered continental waters. While little is known about their anatomy, life history and ecology, interest has grown exponentially in recent years owing to their increasing popularity as aquarium pets. However, the systematic affinities of the genus and the validity of the included species have not been robustly explored. Differences in shell, operculum and radula characters support separation of Clea as presently defined into two distinct genera: Clea, for the type species Clea nigricans and its allies, and Anentome for Clea helena and allies. A five-gene mitochondrial (COI, 16S, 12S) and nuclear (H3, 28S) gene dataset confirms the placement of Anentome as a somewhat isolated offshoot of the family Nassariidae and sister to the estuarine Nassodonta. Anatomical data corroborate this grouping and, in conjunction with their phylogenetic placement, support their recognition as a new subfamily, the Anentominae. The assassin snail Anentome helena, a popular import through the aquarium trade so named for their voracious appetite for other snails, is found to comprise a complex of at least four species. None of these likely represents true Anentome helena described from Java, including a specimen purchased through the aquarium trade under this name in the US and one that was recently found introduced in Singapore, both of which were supported as conspecific with a species from Thailand. The introduction of Anentome "helena" through the aquarium trade constitutes a significant threat to native aquatic snail faunas which are often already highly imperiled. Comprehensive systematic revision of this previously unrecognized species complex is urgently needed to facilitate communication and manage this emerging threat.