Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 79(3): 150, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35211808

RESUMEN

The insulin-like growth factor-1 (IGF-1) signaling pathway is crucial for the regulation of growth and development. The correct processing of the IGF-1Ea prohormone (proIGF-1Ea) and the IGF-1 receptor (IGF-1R) peptide precursor requires proper N-glycosylation. Deficiencies of N-linked glycosylation lead to a clinically heterogeneous group of inherited diseases called Congenital Disorders of Glycosylation (CDG). The impact of N-glycosylation defects on IGF-1/IGF-1R signaling components is largely unknown. In this study, using dermal fibroblasts from patients with different CDG [PMM2-CDG (n = 7); ALG3-CDG (n = 2); ALG8-CDG (n = 1); GMPPB-CDG (n = 1)], we analyzed the glycosylation pattern of the proIGF-1Ea, IGF-1 secretion efficiency and IGF-1R signaling activity. ALG3-CDG, ALG8-CDG, GMPPB-CDG and some PMM2-CDG fibroblasts showed hypoglycosylation of the proIGF-1Ea and lower IGF-1 secretion when compared with control (CTR). Lower IGF-1 serum concentration was observed in ALG3-CDG, ALG8-CDG and in some patients with PMM2-CDG, supporting our in vitro data. Furthermore, reduced IGF-1R expression level was observed in ALG3-CDG, ALG8-CDG and in some PMM2-CDG fibroblasts. IGF-1-induced IGF-1R activation was lower in most PMM2-CDG fibroblasts and was associated with decreased ERK1/2 phosphorylation as compared to CTR. In general, CDG fibroblasts showed a slight upregulation of Endoplasmic Reticulum (ER) stress genes compared with CTR, uncovering mild ER stress in CDG cells. ER-stress-related gene expression negatively correlated with fibroblasts IGF-1 secretion. This study provides new evidence of a direct link between N-glycosylation defects found in CDG and the impairment of IGF-1/IGF-1R signaling components. Further studies are warranted to determine the clinical consequences of reduced systemic IGF-1 availability and local activity in patients with CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Biomarcadores/metabolismo , Estrés del Retículo Endoplásmico , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Lectinas/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
BMC Vet Res ; 18(1): 247, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761326

RESUMEN

BACKGROUND: Leishmaniases are a group of anthropo-zoonotic parasitic diseases caused by a protozoan of the Leishmania genus, affecting both humans and other vertebrates, including dogs. L. infantum is responsible for the visceral and occasionally cutaneous form of the disease in humans and canine leishmaniasis. Previously, we have shown that L. infantum induces a mild but significant increase in endoplasmic reticulum (ER) stress expression markers to promote parasites survival in human and murine infected macrophages. Moreover, we demonstrated that the miRNA hsa-miR-346, induced by the UPR-activated transcription factor sXBP1, was significantly upregulated in human macrophages infected with different L. infantum strains. However, the ER stress response in infected dogs, which represent an important reservoir for Leishmania parasite, was described once recently, whereas the miR-346 expression was not reported before. Therefore, this study aimed to investigate these pathways in the canine macrophage-like cell line DH82 infected by Leishmania spp. and to evaluate the presence of cfa-miR-346 in plasma of non-infected and infected dogs.  The DH82 cells were infected with L. infantum and L. braziliensis parasites and the expression of cfa-mir-346 and several ER stress markers was evaluated by quantitative PCR (qPCR) at different time points. Furthermore, the cfa-miR-346 was monitored in plasma collected from non-infected dogs (n = 11) and dogs naturally infected by L. infantum (n = 18). RESULTS: The results in DH82 cells showed that cfa-mir-346 was induced at both 24 h and 48 h post-infection with all Leishmania strains but not with tunicamycin, accounting for a mechanism of induction independent from sXBP1, unlike what was previously observed in human cell lines. Moreover, the cfa-miR-346 expression analysis on plasma revealed a significant increase in infected dogs compared to non-infected dogs. CONCLUSIONS: Here for the first time, we report the upregulation of cfa-miR-346 induced by Leishmania infection in canine macrophage-like cells and plasma samples of naturally infected dogs. According to our results, the cfa-miR-346 appears to be linked to infection, and understanding its role and identifying its target genes could contribute to elucidate the mechanisms underlying the host-pathogen interaction in leishmaniasis.


Asunto(s)
Enfermedades de los Perros , Leishmaniasis Visceral , MicroARNs , Animales , Enfermedades de los Perros/genética , Enfermedades de los Perros/parasitología , Perros , Leishmania infantum , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/veterinaria , MicroARNs/genética
3.
FASEB J ; 34(1): 1802-1818, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914654

RESUMEN

Ataxia telangiectasia (AT) is a rare, severe, and ineluctably progressive multisystemic neurodegenerative disease. Histone deacetylase 4 (HDAC4) nuclear accumulation has been related to neurodegeneration in AT. Since treatment with glucocorticoid analogues has been shown to improve the neurological symptoms that characterize this syndrome, the effects of dexamethasone on HDAC4 were investigated. In this paper, we describe a novel nonepigenetic function of HDAC4 induced by dexamethasone, through which it can directly modulate HIF-1a activity and promote the upregulation of the DDIT4 gene and protein expression. This new HDAC4 transcription regulation mechanism leads to a positive effect on autophagic flux, an AT-compromised biological pathway. This signaling was specifically induced by dexamethasone only in AT cell lines and can contribute in explaining the positive effects of dexamethasone observed in AT-treated patients.


Asunto(s)
Ataxia Telangiectasia/genética , Expresión Génica/genética , Histona Desacetilasas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Ataxia Telangiectasia/tratamiento farmacológico , Línea Celular , Dexametasona/farmacología , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Glucocorticoides/farmacología , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
4.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210050

RESUMEN

The Gram-negative Campylobacter jejuni is a major cause of foodborne gastroenteritis in humans worldwide. The cytotoxic effects of Campylobacter have been mainly ascribed to the actions of the cytolethal distending toxin (CDT): it is mandatory to put in evidence risk factors for sequela development, such as reactive arthritis (ReA) and Guillain-Barré syndrome (GBS). Several researches are directed to managing symptom severity and the possible onset of sequelae. We found for the first time that rapamycin (RM) is able to largely inhibit the action of C. jejuni lysate CDT in U937 cells, and to partially avoid the activation of specific sub-lethal effects. In fact, we observed that the ability of this drug to redirect lysosomal compartment, stimulate ER-remodeling (highlighted by ER-lysosome and ER-mitochondria contacts), protect mitochondria network, and downregulate CD317/tetherin, is an important component of membrane microdomains. In particular, lysosomes are involved in the process of the reduction of intoxication, until the final step of lysosome exocytosis. Our results indicate that rapamycin confers protection against C. jejuni bacterial lysate insults to myeloid cells.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Campylobacter jejuni/fisiología , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Exocitosis , Lisosomas/metabolismo , Biomarcadores , Muerte Celular/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico , Exocitosis/efectos de los fármacos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Prohibitinas , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Células U937/metabolismo , Células U937/microbiología
5.
Exp Parasitol ; 198: 39-45, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30716304

RESUMEN

In recent years, several studies demonstrated the role of exosomes in intercellular communications, several Leishmania species belonging to subgenera Leishmania and Viannia have been demonstrated to release exosomes, and their role in parasite-macrophage interactions and in leishmaniasis development has been investigated. However, the release of exosomes by Leishmania infantum has not been studied so far. The aim of this study was to isolate and characterize L. infantum exosomes, and to investigate the biological activity of these exosomes in macrophage cultures. To this end, exosomes were collected from both amastigote and promastigote L. infantum conditioned medium by ultracentrifugation. Exosomes were then characterized by monitoring the presence of HSP70, HSP83/90 and acetylcholinesterase activity. Moreover, extracellular vesicles-tracking analysis revealed that promastigote and amastigote exosomes had mean diameter of 122 ±â€¯56 nm and 115 ±â€¯65 nm, respectively. Human monocytic cell line U937-derived macrophages treated with promastigote and amastigote exosomes showed an increase in motility and an overproduction of interleukin IL-10 and IL-18 reduction, involved in immune response. Since L. infantum exosomes demonstrated the capacity to modulate the chemotactic behaviour of the cells studied and cytokines production, they could contribute in the disease establishment and may be considered an appropriate candidate for a vaccine therapy in prophylaxis and treatment.


Asunto(s)
Quimiotaxis/fisiología , Citocinas/metabolismo , Exosomas/metabolismo , Leishmania infantum/metabolismo , Citocinas/genética , Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-18/metabolismo , Células U937
6.
J Virol ; 90(16): 7118-7130, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226373

RESUMEN

UNLABELLED: Injection of the LP-BM5 murine leukemia virus into mice causes murine AIDS, a disease characterized by many dysfunctions of immunocompetent cells. To establish whether the disease is characterized by glutathione imbalance, reduced glutathione (GSH) and cysteine were quantified in different organs. A marked redox imbalance, consisting of GSH and/or cysteine depletion, was found in the lymphoid organs, such as the spleen and lymph nodes. Moreover, a significant decrease in cysteine and GSH levels in the pancreas and brain, respectively, was measured at 5 weeks postinfection. The Th2 immune response was predominant at all times investigated, as revealed by the expression of Th1/Th2 cytokines. Furthermore, investigation of the activation status of peritoneal macrophages showed that the expression of genetic markers of alternative activation, namely, Fizz1, Ym1, and Arginase1, was induced. Conversely, expression of inducible nitric oxide synthase, a marker of classical activation of macrophages, was detected only when Th1 cytokines were expressed at high levels. In vitro studies revealed that during the very early phases of infection, GSH depletion and the downregulation of interleukin-12 (IL-12) p40 mRNA were correlated with the dose of LP-BM5 used to infect the macrophages. Treatment of LP-BM5-infected mice with N-(N-acetyl-l-cysteinyl)-S-acetylcysteamine (I-152), an N-acetyl-cysteine supplier, restored GSH/cysteine levels in the organs, reduced the expression of alternatively activated macrophage markers, and increased the level of gamma interferon production, while it decreased the levels of Th2 cytokines, such as IL-4 and IL-5. Our findings thus establish a link between GSH deficiency and Th1/Th2 disequilibrium in LP-BM5 infection and indicate that I-152 can be used to restore the GSH level and a balanced Th1/Th2 response in infected mice. IMPORTANCE: The first report of an association between Th2 polarization and alteration of the redox state in LP-BM5 infection is presented. Moreover, it provides evidence that LP-BM5 infection causes a decrease in the thiol content of peritoneal macrophages, which can influence IL-12 production. The restoration of GSH levels by GSH-replenishing molecules can represent a new therapeutic avenue to fight this retroviral infection, as it reestablishes the Th1/Th2 balance. Immunotherapy based on the use of pro-GSH molecules would permit LP-BM5 infection and probably all those viral infections characterized by GSH deficiency and a Th1/Th2 imbalance to be more effectively combated.


Asunto(s)
Glutatión/deficiencia , Virus de la Leucemia Murina/patogenicidad , Leucemia Experimental/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Murino/etiología , Infecciones por Retroviridae/complicaciones , Células Th2/inmunología , Infecciones Tumorales por Virus/complicaciones , Animales , Células Cultivadas , Citocinas/metabolismo , Femenino , Leucemia Experimental/inmunología , Leucemia Experimental/virología , Activación de Linfocitos , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/virología , Ratones , Ratones Endogámicos C57BL , Síndrome de Inmunodeficiencia Adquirida del Murino/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Murino/patología , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/virología , Bazo/inmunología , Bazo/metabolismo , Bazo/virología , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/virología , Células Th2/metabolismo , Células Th2/virología , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/virología
7.
Gynecol Endocrinol ; 31(10): 755-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26291813

RESUMEN

Since 1989, the year of the first pre-implantation genetic diagnosis (PGD), many developments occurred both in assisted reproduction techniques and in molecular tools. While PGD is a well-established and documented application, pre-implantation genetic screening (PGS) for the detection of aneuploid embryos is still debated due to the presence of mosaicism in the embryo, but especially to the knowledge of the limits that label an embryo as healthy or as appropriate to the life. The aim of this review is to present the state-of-the-art in the field of PGD and PGS, illustrating its benefits and limitations, along with biopsy techniques and the use of new high-throughput technologies.


Asunto(s)
Pruebas Genéticas/tendencias , Diagnóstico Preimplantación/tendencias , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mosaicismo , Técnicas Reproductivas Asistidas
8.
J Pineal Res ; 57(2): 192-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24980917

RESUMEN

Conditions that interfere with the endoplasmic reticulum (ER) functions cause accumulation of unfolded proteins in the ER lumen, referred to as ER stress, and activate a homeostatic signaling network known as unfolded protein response (UPR). We have previously shown that in neonatal rats subjected to hypoxia-ischemia (HI), melatonin administration significantly reduces brain damage. This study assessed whether attenuation of ER stress is involved in the neuroprotective effect of melatonin after neonatal HI. We found that the UPR was strongly activated after HI. Melatonin significantly reduced the neuron splicing of XBP-1 mRNA, the increased phosphorylation of eIF2α, and elevated expression of chaperone proteins GRP78 and Hsp70 observed after HI in the brain. CHOP, which plays a convergent role in the UPR, was reduced as well. Melatonin also completely prevented the depletion of SIRT-1 induced by HI, and this effect was observed in the same neurons that over-express CHOP. These results demonstrate that melatonin reduces ER stress induced by neonatal HI and preserves SIRT-1 expression, suggesting that SIRT-1, due to its action in the modulation of a wide variety of signaling pathways involved in neuroprotection, may play a key role in the reduction of ER stress and neuroprotection observed after melatonin.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipoxia-Isquemia Encefálica/metabolismo , Melatonina/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Sirtuina 1/metabolismo , Animales , Animales Recién Nacidos , Ratas
9.
Mar Drugs ; 12(10): 5258-76, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25341029

RESUMEN

The dinoflagellate Alexandrium minutum is known for the production of potent neurotoxins affecting the health of human seafood consumers via paralytic shellfish poisoning (PSP). The aim of this study was to investigate the relationship between the toxin content and the expression level of the genes involved in paralytic shellfish toxin (PST) production. The algal cultures were grown both in standard f/2 medium and in phosphorus/nitrogen limitation. In our study, LC-HRMS analyses of PST profile and content in different Mediterranean A. minutum strains confirmed that this species was able to synthesize mainly the saxitoxin analogues Gonyautoxin-1 (GTX1) and Gonyautoxin-4 (GTX4). The average cellular toxin content varied among different strains, and between growth phases, highlighting a decreasing trend from exponential to stationary phase in all culture conditions tested. The absolute quantities of intracellular sxtA1 and sxtG mRNA were not correlated with the amount of intracellular toxins in the analysed A. minutum suggesting that the production of toxins may be regulated by post-transcriptional mechanisms and/or by the concerted actions of alternative genes belonging to the PST biosynthesis gene cluster. Therefore, it is likely that the sxtA1 and sxtG gene expression could not reflect the PST accumulation in the Mediterranean A. minutum populations under the examined standard and nutrient limiting conditions.


Asunto(s)
Dinoflagelados/genética , Expresión Génica/genética , Saxitoxina/análogos & derivados , Saxitoxina/genética , Dinoflagelados/metabolismo , Familia de Multigenes/genética , Neurotoxinas/genética , Neurotoxinas/metabolismo , ARN Mensajero/genética , Saxitoxina/metabolismo , Intoxicación por Mariscos/genética , Intoxicación por Mariscos/metabolismo
10.
PLoS Negl Trop Dis ; 18(4): e0012085, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578804

RESUMEN

BACKGROUND: In the Mediterranean basin, three Leishmania species have been identified: L. infantum, L. major and L. tropica, causing zoonotic visceral leishmaniasis (VL), zoonotic cutaneous leishmaniasis (CL) and anthroponotic CL, respectively. Despite animal models and genomic/transcriptomic studies provided important insights, the pathogenic determinants modulating the development of VL and CL are still poorly understood. This work aimed to identify host transcriptional signatures shared by cells infected with L. infantum, L. major, and L. tropica, as well as specific transcriptional signatures elicited by parasites causing VL (i.e., L. infantum) and parasites involved in CL (i.e., L. major, L. tropica). METHODOLOGY/PRINCIPAL FINDINGS: U937 cells differentiated into macrophage-like cells were infected with L. infantum, L. major and L. tropica for 24h and 48h, and total RNA was extracted. RNA sequencing, performed on an Illumina NovaSeq 6000 platform, was used to evaluate the transcriptional signatures of infected cells with respect to non-infected cells at both time points. The EdgeR package was used to identify differentially expressed genes (fold change > 2 and FDR-adjusted p-values < 0.05). Then, functional enrichment analysis was employed to identify the enriched ontology terms in which these genes are involved. At 24h post-infection, a common signature of 463 dysregulated genes shared among all infection conditions was recognized, while at 48h post-infection the common signature was reduced to 120 genes. Aside from a common transcriptional response, we evidenced different upregulated functional pathways characterizing L. infantum-infected cells, such as VEGFA-VEGFR2 and NFE2L2-related pathways, indicating vascular remodeling and reduction of oxidative stress as potentially important factors for visceralization. CONCLUSIONS: The identification of pathways elicited by parasites causing VL or CL could lead to new therapeutic strategies for leishmaniasis, combining the canonical anti-leishmania compounds with host-directed therapy.


Asunto(s)
Leishmania infantum , Leishmania major , Leishmania tropica , Leishmaniasis Cutánea , Leishmaniasis Visceral , Animales , Humanos , Leishmania tropica/genética , Leishmania infantum/genética , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , Macrófagos
11.
PLoS One ; 19(6): e0301901, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870204

RESUMEN

Herein we report the design and the synthesis of a library of new and more hydrophilic bisindole analogues based on our previously identified antileishmanial compound URB1483 that failed the preliminary in vivo test. The novel bisindoles were phenotypically screened for efficacy against Leishmania infantum promastigotes and simultaneously for toxicity on human macrophage-like THP-1 cells. Among the less toxic compounds, eight bisindoles showed IC50 below 10 µM. The most selective compound 1h (selectivity index = 10.1, comparable to miltefosine) and the most potent compound 2c (IC50 = 2.7 µM) were tested for their efficacy on L. infantum intracellular amastigotes. The compounds also demonstrated their efficacy in the in vitro infection model, showing IC50 of 11.1 and 6.8 µM for 1h and 2c, respectively. Moreover, 1h showed a better toxicity profile than the commercial drug miltefosine. For all these reasons, 1h could be a possible new starting point for hydrophilic antileishmanial agents with low cytotoxicity on human macrophage-like cells.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Leishmania infantum/efectos de los fármacos , Humanos , Antiprotozoarios/farmacología , Antiprotozoarios/química , Células THP-1 , Indoles/farmacología , Indoles/química , Interacciones Hidrofóbicas e Hidrofílicas , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Fosforilcolina/química , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Concentración 50 Inhibidora
12.
RSC Adv ; 14(22): 15713-15720, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38746834

RESUMEN

A chemoselective one-pot synthesis of pharmaceutically prospective indole-pyrrole hybrids by the formal [3 + 2] cycloaddition of 3-cyanoacetyl indoles (CAIs) with 1,2-diaza-1,3-dienes (DDs) has been developed. The new indole-pyrrole hybrids were phenotypically screened for efficacy against Leishmania infantum promastigotes. The most active compounds 3c, 3d, and 3j showed IC50 < 20 µM and moderate cytotoxicity, lower than miltefosine. Compound 3d was the most active with IC50 = 9.6 µM and a selectivity index of 5. Consequently, 3d could be a new lead compound for the generation of a new class of antileishmanial hybrids.

13.
Pathogens ; 13(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38392842

RESUMEN

Protein synthesis has been a very rich target for developing drugs to control prokaryotic and eukaryotic pathogens. Despite the development of new drug formulations, treating human cutaneous and visceral Leishmaniasis still needs significant improvements due to the considerable side effects and low adherence associated with the current treatment regimen. In this work, we show that the di-substituted urea-derived compounds I-17 and 3m are effective in inhibiting the promastigote growth of different Leishmania species and reducing the macrophage intracellular load of amastigotes of the Leishmania (L.) amazonensis and L. major species, in addition to exhibiting low macrophage cytotoxicity. We also show a potential immunomodulatory effect of I-17 and 3m in infected macrophages, which exhibited increased expression of inducible Nitric Oxide Synthase (NOS2) and production of Nitric Oxide (NO). Our data indicate that I-17, 3m, and their analogs may be helpful in developing new drugs for treating leishmaniasis.

14.
Parasit Vectors ; 16(1): 282, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580789

RESUMEN

BACKGROUND: Leishmaniasis is a zoonotic disease endemic in the Mediterranean region where Leishmania infantum is the causative agent of human and canine infection. Characterization of this parasite at the subspecies level can be useful in epidemiological studies, to evaluate the clinical course of the disease (e.g. resistant strains, visceral and cutaneous forms of leishmaniasis) as well as to identify infection reservoirs. Multilocus enzyme electrophoresis (MLEE), a method currently recognized as the reference method for characterizing and identifying strains of Leishmania, is cumbersome and time-consuming and requires cultured parasites. These disadvantages have led to the development of other methods, such as multilocus microsatellite typing (MLMT) and multilocus sequence typing (MLST), for typing Leishmania parasites; however, these methods have not yet been applied for routine use. In this study, we first used MLST to identify informative polymorphisms on single-copy genes coding for metabolic enzymes, following which we developed two rapid genotyping assays based on high-resolution melting (HRM) analysis to explore these polymorphisms in L. infantum parasites. METHODS: A customized sequencing panel targeting 14 housekeeping genes was designed and MLST analysis was performed on nine L. infantum canine and human strains/isolates. Two quantitative real-time PCR-HRM assays were designed to analyze two informative polymorphisms on malic enzyme (ME) and glucose-6-phosphate isomerase (GPI) genes (390T/G and 1831A/G, respectively). The two assays were applied to 73 clinical samples/isolates from central/southern Italy and Pantelleria island, and the results were confirmed by DNA sequencing in a subset of samples. RESULTS: The MLST analysis, together with sequences available in the Genbank database, enabled the identification of two informative polymorphisms on the genes coding for ME and GPI. The fast screening of these polymorphisms using two HRM-based assays in 73 clinical samples/isolates resulted in the identification of seven genotypes. Overall, genotype 1 (sequence type 390T/1831G) was the most highly represented (45.2%) in the overall sample and correlated with the most common L. infantum zymodemes (MON-1, MON-72). Interestingly, in Pantelleria island, the most prevalent genotype (70.6%) was genotype 6 (sequence type 390T/1831A). CONCLUSIONS: Applying our HRM assays on clinical samples allowed us to identify seven different genotypes without the need for parasite isolation and cultivation. We have demonstrated that these assays could be used as fast, routine and inexpensive tools for epidemiological surveillance of L. infantum or for the identification of new infection reservoirs.


Asunto(s)
Glucosa-6-Fosfato Isomerasa , Leishmania infantum , Proteínas Protozoarias , Genotipo , Glucosa-6-Fosfato Isomerasa/genética , Leishmania infantum/enzimología , Leishmania infantum/genética , Tipificación de Secuencias Multilocus , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Protozoarias/genética
15.
Viruses ; 15(5)2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37243247

RESUMEN

The humoral response after vaccination was evaluated in 1248 individuals who received different COVID-19 vaccine schedules. The study compared subjects primed with adenoviral ChAdOx1-S (ChAd) and boosted with BNT162b2 (BNT) mRNA vaccines (ChAd/BNT) to homologous dosing with BNT/BNT or ChAd/ChAd vaccines. Serum samples were collected at two, four and six months after vaccination, and anti-Spike IgG responses were determined. The heterologous vaccination induced a more robust immune response than the two homologous vaccinations. ChAd/BNT induced a stronger immune response than ChAd/ChAd at all time points, whereas the differences between ChAd/BNT and BNT/BNT decreased over time and were not significant at six months. Furthermore, the kinetic parameters associated with IgG decay were estimated by applying a first-order kinetics equation. ChAd/BNT vaccination was associated with the longest time of anti-S IgG negativization and with a slow decay of the titer over time. Finally, analyzing factors influencing the immune response by ANCOVA analysis, it was found that the vaccine schedule had a significant impact on both the IgG titer and kinetic parameters, and having a Body Mass Index (BMI) above the overweight threshold was associated with an impaired immune response. Overall, the heterologous ChAd/BNT vaccination may offer longer-lasting protection against SARS-CoV-2 than homologous vaccination strategies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Estudios Longitudinales , Vacuna BNT162 , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , ChAdOx1 nCoV-19 , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes
16.
Sci Rep ; 13(1): 21598, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062105

RESUMEN

The current global pandemic of COVID-19 is characterized by waves of infection due to the emergence of new SARS-CoV-2 variants carrying mutations on the Spike (S) protein gene. Since autumn 2020 many Variants of Concern (VOC) have been reported: Alpha/B.1.1.7, Beta/B.1.351, Gamma/P.1, Delta/B.1.617.2, Omicron/B.1.1.529, and sublineages. Surveillance of genomic variants is currently based on whole-genome sequencing (WGS) of viral genomes on a random fraction of samples positive to molecular tests. WGS involves high costs, extended analysis time, specialized staff, and expensive instruments compared to a PCR-based test. To rapidly identify the VOCs in positive samples, six assays based on real-time PCR and high-resolution melting (HRM) were designed on the S gene and applied to 120 oro/nasopharyngeal swab samples collected from October 2020 to June 2022 (106 positive and 14 negative samples). Overall, the assays showed 100% specificity and sensitivity compared with commercial PCR tests for COVID-19. Moreover, 104 samples out of 106 (98.1%) were correctly identified as follows: 8 Wuhan (wild type), 12 Alpha, 23 Delta, 46 Omicron BA.1/BA.1.1, 15 Omicron BA.2/BA.4/BA.5. With our lab equipment, about 10 samples can be processed every 3 h at the cost of less than € 10 ($ 10.60) per sample, including RNA extraction. The implementation of this approach could help local epidemiological surveillance and clinical decision-making.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Bioensayo
17.
Vaccines (Basel) ; 10(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35455240

RESUMEN

We evaluated the post-vaccination humoral response of three real-world cohorts. Vaccinated subjects primed with ChAdOx1-S and boosted with BNT162b2 mRNA vaccine were compared to homologous dosing (BNT162b2/BNT162b2 and ChAdOx1-S/ChAdOx1-S). Serum samples were collected two months after vaccination from a total of 1248 subjects. The results showed that the heterologous vaccine schedule induced a significantly higher humoral response followed by homologous BNT162b2/BNT162b2 and ChAdOx1-S/ChAdOx1-S vaccines (p < 0.0001). Moreover, analyzing factors (i.e., vaccine schedule, sex, age, BMI, smoking, diabetes, cardiovascular diseases, respiratory tract diseases, COVID-19 diagnosis, vaccine side effects) influencing the IgG anti-S response, we found that only the type of vaccine affected the antibody titer (p < 0.0001). Only mild vaccine reactions resolved within few days (40% of subjects) and no severe side effects for either homologous groups or the heterologous group were reported. Our data support the use of heterologous vaccination as an effective and safe alternative to increase humoral immunity against COVID-19.

18.
Breast Cancer Res ; 13(2): R33, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21435243

RESUMEN

INTRODUCTION: Indole-3-carbinol (I3C), an autolysis product of glucosinolates present in cruciferous vegetables, and its dimeric derivative (3,3'-DIM) have been indicated as promising agents in preventing the development and progression of breast cancer. We have recently shown that I3C cyclic tetrameric derivative CTet formulated in γ-cyclodextrin (γ-CD) efficiently inhibited cellular proliferation in breast cancer cell lines. This study aims to analyze the mechanisms involved in the in vitro inhibition of cell proliferation and to evaluate the in vivo antitumor activity of CTet in a xenograft study. METHODS: Estrogen receptor-positive MCF-7 and triple-negative MDA-MB-231 breast cancer cell lines were exposed to CTet to evaluate cell cycle perturbation (propidium iodide staining and cytofluorimetric acquisition), induction of autophagic morphological features (co-localization of LC3b autophagosome marker and LAMP2a lysosome marker by immunofluorescence) and changes in protein expression (immunoblot and microarray-based gene expression analyses). To test the in vivo efficacy of CTet, female athymic nude mice inoculated with MCF-7 cells were i.p. treated with 5 mg/kg/day of CTet for five days/week for two weeks and the tumor mass was externally monitored. RESULTS: CTet induced accumulation in G2/M phase without evidence of apoptotic response induction in both cell lines tested. In triple-negative MDA-MB-231 the autophagic lysosomal activity was significantly up-regulated after exposure to 4 µM of CTet for 8 hours, while the highest CTet concentration was necessary to observe autophagic features in MCF-7 cells. The inhibition of Akt activity and p53-independent p21/CDKN1A and GADD45A overexpression were identified as the main molecular events responsible for CTet activity in MCF-7 and p53-mutant MDA-MB-231 cells. In vivo, CTet administration was able to significantly inhibit the growth of MCF-7 xenotransplanted into nude mice, without adverse effect on body weight or on haematological parameters. CONCLUSIONS: Our data support CTet formulated with γ-CD as a promising and injectable anticancer agent for both hormone-responsive and triple-negative breast tumors.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Indoles/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes p53 , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas , Proteínas de Membrana de los Lisosomas/metabolismo , Ratones , Ratones Desnudos , Proteínas Nucleares/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , gamma-Ciclodextrinas
19.
Antioxidants (Basel) ; 10(2)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530504

RESUMEN

I-152 combines two pro-glutathione (GSH) molecules, namely N-acetyl-cysteine (NAC) and cysteamine (MEA), to improve their potency. The co-drug efficiently increases/replenishes GSH levels in vitro and in vivo; little is known about its mechanism of action. Here we demonstrate that I-152 not only supplies GSH precursors, but also activates the antioxidant kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2 (KEAP1/NRF2) pathway. The mechanism involves disulfide bond formation between KEAP1 cysteine residues, NRF2 stabilization and enhanced expression of the γ-glutamil cysteine ligase regulatory subunit. Accordingly, a significant increase in GSH levels, not reproduced by treatment with NAC or MEA alone, was found. Compared to its parent compounds, I-152 delivered NAC more efficiently within cells and displayed increased reactivity to KEAP1 compared to MEA. While at all the concentrations tested, I-152 activated the NRF2 pathway; high doses caused co-activation of activating transcription factor 4 (ATF4) and ATF4-dependent gene expression through a mechanism involving Atf4 transcriptional activation rather than preferential mRNA translation. In this case, GSH levels tended to decrease over time, and a reduction in cell proliferation/survival was observed, highlighting that there is a concentration threshold which determines the transition from advantageous to adverse effects. This body of evidence provides a molecular framework for the pro-GSH activity and dose-dependent effects of I-152 and shows how synergism and cross reactivity between different thiol species could be exploited to develop more potent drugs.

20.
Microorganisms ; 9(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073643

RESUMEN

Cutaneous leishmaniasis (CL) caused by Leishmania (Leishmania) infantum is endemic in the Mediterranean basin. Here we report an autochthonous case of CL in a patient living in central Italy with an unsatisfactory response to treatment with intralesional Meglumine Antimoniate and in vitro demonstration of reduced susceptibility to SbIII. Parasitological diagnosis was first achieved by histopathology on tissue biopsy and the patient was treated with a local infiltration of Meglumine Antimoniate. Since the clinical response at 12 weeks from the treatment's onset was deemed unsatisfactory, two further skin biopsies were taken for histopathological examination, DNA extraction and parasite isolation. L. (L.) infantum was identified by molecular typing. The low susceptibility to Meglumine Antimoniate was confirmed in vitro: the promastigotes from the patient strain showed significantly lower susceptibility to SbIII (the active trivalent form of antimonial) compared to the reference strain MHOM/TN/80/IPT1. The patient underwent a new treatment course with intravenous liposomal Amphotericin B, reaching complete healing of the lesion. Additional studies are needed to confirm the epidemiological and clinical relevance of reduced susceptibility to SbIII of human L. (L.) infantum isolate in Italy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA