Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Phys Chem Chem Phys ; 25(5): 4105-4112, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651805

RESUMEN

Developing transition metal dichalcogenides as electrocatalysts has attracted great interest due to their tunable electronic properties and good thermal stabilities. Herein, we propose a PdTe2 bilayer as a promising electrocatalyst candidate towards the oxygen reduction reaction (ORR), based on extensive investigation of the electronic properties of PdTe2 thin films as well as atomic-level reaction kinetics at explicit electrode potentials. We verify that under electrochemical reducing conditions, the electron emerging on the electrode surface is directly transferred to O2 adsorbed on the PdTe2 bilayer, which greatly reduces the dissociation barrier of O2, and thereby facilitates the ORR to proceed via a dissociative pathway. Moreover, the barriers of the electrochemical steps in this pathway are all found to be less than 0.1 eV at the ORR limiting potential, demonstrating fast ORR kinetics at ambient conditions. This unique mechanism offers excellent energy efficiency and four-electron selectivity for the PdTe2 bilayer, and it is identified as a promising candidate for fuel cell applications.

2.
Phys Chem Chem Phys ; 25(5): 4230-4235, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661111

RESUMEN

The grain boundaries (GBs) composed of pentagons and octagons (558 GBs) have been demonstrated to induce attractive transport properties such as Van Hove singularity (VHS) and quasi-one-dimensional metallic wires. Here, we propose a monolayer carbon allotrope which is formed from the introduction of periodic 558 GBs to decorate intact graphene, termed as PHO-graphene. The calculated electronic properties indicate that PHO-graphene not only inherits the previously superior characteristics such as Van Hove singularity and quasi-one-dimensional metallic wires, but also possesses two twisted Dirac cones near the Fermi level. Further calculation finds that the Berry phase is quantized to ± π at the two Dirac points, which is consistent with the distribution of the corresponding Berry curvature. The parity argument uncovers that PHO-graphene hosts a nontrivial band topology and the edge states connecting the two Dirac points are clearly visible. Our findings not only provide a reliable avenue to realize the abundant and extraordinary properties of carbon allotropes, but also offer an attractive approach for designing all carbon-based devices.

3.
Angew Chem Int Ed Engl ; 61(45): e202209693, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36114595

RESUMEN

The efficiency of direct methanol fuel cell (DMFC) is largely determined by the activity and durability of methanol oxidation reaction (MOR) catalysts. Herein, we present a CO-resilient MOR catalyst of palladium-tin nano-alloy anchored on Se-doped MXene (PdSn0.5 /Se-Ti3 C2 ) via a progressive one-step electrochemical deposition strategy. MOR mass activity resulting from Pd/Se-Ti3 C2 catalyst (1046.2 mA mg-1 ) is over 2-fold larger than that of Pd/Ti3 C2 , suggesting that the introduction of Se atoms on MXene might accelerate the reaction kinetics. PdSn0.5 /Se-Ti3 C2 with Se-doping progress of MXene and the cooperated Pd-Sn sites has a superior MOR mass activity (4762.8 mA mg-1 ), outperforming many other reported Pd-based catalysts. Both experimental results and theoretical calculation reveal that boosted electron interaction of metal crystals with Se-doped MXene and optimized distribution of Pd-Sn sites can modulate the d band center, reduce adsorption energies of CO* at Pd site and enhance OH* generation at Sn site, resulting in highly efficient removal of CO intermediates by reaction with neighboring OH species on adjacent Sn sites.

4.
Anal Chem ; 91(22): 14611-14617, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31660734

RESUMEN

Photoelectrochemical (PEC) techniques are of fundamental and practical importance, and they have been widely used for solar energy conversion and experimental protection. Besides these important applications, an emerging and fast developing PEC application of PEC bioanalysis is receiving more attention from both academic and clinic communities. However, the typical PEC biosensing is still limited under illumination of ultraviolet and visible (UV/vis) light, which hampers its in vivo detection in deep tissues. Expanding the optical absorption wavelength of photoelectrodes from the UV/vis light region into the near-infrared (NIR) light region is highly desirable due to its deep tissue penetrability and minimal invasiveness for organisms, but the exploration of a facile strategy to implement efficient NIR absorption with biocompatible materials is still a big challenge. Herein, under the guidance of theorical calculations, we propose a strategy through modulation of bulk/surface defects and decoration of Au nanoparticles on TiO2 nanotube photonic crystals to implement efficient NIR response and thus successfully realize sensitive and selective PEC detection of antibiotics in real bio- and experimental-samples under NIR illumination. In addition, we first implement the in vivo PEC detection under illumination of NIR light. We have faith that this new NIR photoelectric responsive strategy will provide a broad platform for detection of life-related biomolecules in deep tissues or even in vivo for real-time measurement and shed light on the intrinsic connections between biomarkers and clinical diseases.


Asunto(s)
Antibacterianos/análisis , Oro/química , Nanopartículas del Metal/química , Nanotubos/química , Tetraciclina/análisis , Titanio/química , Animales , Antibacterianos/química , Aptámeros de Nucleótidos/química , ADN/química , Teoría Funcional de la Densidad , Técnicas Electroquímicas/métodos , Oro/efectos de la radiación , Rayos Infrarrojos , Masculino , Nanopartículas del Metal/efectos de la radiación , Ratones , Modelos Químicos , Nanotubos/efectos de la radiación , Óptica y Fotónica/métodos , Tetraciclina/química , Titanio/efectos de la radiación
5.
Chemistry ; 24(19): 4902-4908, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29368412

RESUMEN

Selective decomposition of hydrous hydrazine (N2 H4 ⋅H2 O) over metal catalysts provides a promising means for onboard or portable hydrogen source applications. Studies on N2 H4 ⋅H2 O decomposition catalysts mainly focus on the effects of bulk composition and structure on their performances, instead of the surface-composition-dependent properties. Herein, the synthesis of an Ir-modified Ni/meso-CeO2 catalyst is reported by using a combination of colloidal solution combustion synthesis and galvanic replacement methods. A combination of structural characterization, control experiments, and DFT calculations reveals that the Ni-Ir alloy resulting from calcination treatment exerts a profound effect on the catalytic properties. The resulting Ni@Ni-Ir/meso-CeO2 catalyst shows excellent catalytic performance towards hydrogen generation from N2 H4 ⋅H2 O, which compares favorably with the Ni-Ir bimetallic catalysts reported to date.

6.
Phys Chem Chem Phys ; 20(37): 24168-24175, 2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30207335

RESUMEN

The stacking of monolayers in the form of van der Waals heterostructures is a useful strategy for band gap engineering and the control of dynamics of excitons for potential nano-electronic devices. We performed first-principles calculations to investigate the structural, electronic, optical and photocatalytic properties of the SiC-MX2 (M = Mo, W and X = S, Se) van der Waals heterostructures. The stability of most favorable stacking is confirmed by calculating the binding energy and phonon spectrum. SiC-MoS2 is found to be a direct band gap type-II semiconducting heterostructure. Moderate in-plane tensile strain is used to achieve a direct band gap with type-II alignment in the SiC-WS2, SiC-MoSe2 and SiC-WSe2 heterostructures. A difference in the ionization potential of the corresponding monolayers and interlayer charge transfer further confirmed the type-II band alignment in these heterostructures. Furthermore, the optical behaviour is investigated by calculation of the absorption spectra in terms of ε2(ω) of the heterostructures and the corresponding monolayers. The photocatalytic response shows that the SiC-Mo(W)S2 heterostructures can oxidize H2O to O2. An enhanced photocatalytic performance with respect to the parent monolayers makes the SiC-Mo(W)Se2 heterostructures promising candidates for water splitting.

7.
Int J Hydrogen Energy ; 43(52)2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38915910

RESUMEN

Synthesis of high-performance and cost-effective catalysts towards the hydrogen evolution reaction (HER) is critical in developing electrochemical water-splitting as a viable energy conversion technique. For non-precious metal Co- and Ni-based catalysts, hydroxides were found to form on the surface of the catalysts under alkaline environments and benefit the catalytic performance, whereas there is limited systematic study on the explicit influence of hydroxides on the electrocatalytic mechanism and performance of these catalysts. Herein, we report a close correlation observed between the amount of the surface hydroxides formed and the resulting electrocatalytic performance of a Co-Mo-O nanocatalyst through careful comprehensive structural and property characterizations. We found that an appropriate amount of hydroxide can be moderated by simply coating the catalyst surface with carbon shells to optimize the catalytic properties. As a result, a carbon-coated Co-Mo-O nanocatalyst was successfully developed and is among the best reported non-precious HER catalysts with a superior electrocatalytic activity and outstanding durability for the HER under alkaline environment. First-principles calculations were further conducted to probe the nature of the active sites and the role of hydroxides in the Co-Mo-O@C/NF catalyst towards the HER.

8.
Phys Chem Chem Phys ; 19(22): 14738-14744, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28540961

RESUMEN

The structural, electronic, and photocatalytic properties of two-dimensional Ti2CO2, Zr2CO2, and Hf2CO2 MXenes were investigated by first-principles (PBE and hybrid) calculations. Transition from an indirect to a direct band gap was achieved for the biaxial tensile strain of 3% for Ti2CO2, 8% for Zr2CO2, and 13% for Hf2CO2 while the nature of the band gap remained indirect in the case of the compressive strain. The size of the band gap passed through a maximum under tensile strain and decreased monotonically under compressive strain. Analysis of Bader charge distribution showed that the tensile strain decreased the transfer of charge from the Ti, Zr, and Hf atoms to the C atom. Phonon spectra suggested that these systems are stable under a wide range of strains from compression to tension. The photocatalytic properties showed that unstrained and biaxial tensile strained Ti2CO2, Zr2CO2, and Hf2CO2 systems can be used to oxidize H2O into O2.

9.
Phys Chem Chem Phys ; 19(12): 8563-8567, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28289739

RESUMEN

Recently, a two-dimensional Pma2-SiS monolayer has been predicted to show promising electronic properties [Nano Lett., 2015, 16, 1110]. However, it is suggested that Pma2-SiS is not suitable as an anode for Li-ion batteries [J. Power Sources, 2016, 331, 391]. By employing density functional theory calculations, we find that an ultrahigh theoretical specific capacity of 893.4 mA h g-1 can be achieved in Pma2-SiS due to the strong bonding between Li and the S atoms released from Si-S bond breakage. Additionally, the low barrier of Li-diffusion (0.08 eV) along the Si-Si bond direction and the moderate average voltage (1.12 V) of the Li intercalation suggest that Pma2-SiS is promising as an anode material for Li-ion battery applications.

10.
Phys Chem Chem Phys ; 19(48): 32253-32261, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29189847

RESUMEN

Herein, we systematically explored the electronic properties of Sc-based MXenes via first-principles calculations, with the aim to extend their applicability. OH-Functionalized carbides and OH/SH-terminated nitrides manifest ultralow work functions, potential in field-effect transistors. Furthermore, we identified three novel semiconductors (Sc2CCl2, Sc2C(SH)2, and Sc2NO2). Specifically, Sc2NO2 is a spin gapless semiconductor, promising for spintronics. Type-II heterojunctions are readily available between Sc-based semiconducting MXenes, facilitating charge separation for optoelectronics and solar energy conversion. Further photocatalytic analysis indicates that Sc2CCl2 is capable of oxidizing H2O into O2.

11.
Phys Chem Chem Phys ; 19(44): 30069-30077, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29098219

RESUMEN

We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C3N4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C3N4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C3N4 gives rise to promising single-atom catalysts at low temperature.

12.
Phys Chem Chem Phys ; 18(4): 3080-5, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26742089

RESUMEN

Using first-principles calculations, we investigate the strain effects on the charge density wave states of monolayer and bilayer 1T-TaS2. The modified stability of the charge density wave in the monolayer is understood in terms of the strain dependent electron localization, which determines the distortion amplitude. On the other hand, in the bilayer, the effect of strain on the interlayer interaction is also crucial. The rich phase diagram under strain opens new venues for applications of 1T-TaS2. We interpret the experimentally observed insulating state of bulk 1T-TaS2 as inherited from the monolayer by effective interlayer decoupling.

13.
Phys Chem Chem Phys ; 18(17): 12307-11, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27086676

RESUMEN

The fluorinated boron nitride (F-BN) nanostructures are found to be fully spin polarized and half-metallic by means of first-principles calculations based on the Heyd-Scuseria-Ernzerhof hybrid functional. It is found that the full spin polarization and 1 µB local moment in F-BN nanotubes are independent of tube radius and it is also robust in planar ribbons and sheets. The long-ranged ferromagnetic coupling between local moments decreases with decreasing tube radius. This suggests that F-BN systems with small local curvatures could be more easily experimentally observed and have greater potential applications in spin devices.

14.
Nano Lett ; 15(1): 610-5, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25517795

RESUMEN

With the increased need for high-rate Li-ion batteries, it has become apparent that new electrode materials with enhanced Li-ion transport should be designed. Interfaces, such as twin boundaries (TBs), offer new opportunities to navigate the ionic transport within nanoscale materials. Here, we demonstrate the effects of TBs on the Li-ion transport properties in single crystalline SnO2 nanowires. It is shown that the TB-assisted lithiation pathways are remarkably different from the previously reported lithiation behavior in SnO2 nanowires without TBs. Our in situ transmission electron microscopy study combined with direct atomic-scale imaging of the initial lithiation stage of the TB-SnO2 nanowires prove that the lithium ions prefer to intercalate in the vicinity of the (101̅) TB, which acts as conduit for lithium-ion diffusion inside the nanowires. The density functional theory modeling shows that it is energetically preferred for lithium ions to accumulate near the TB compared to perfect neighboring lattice area. These findings may lead to the design of new electrode materials that incorporate TBs as efficient lithium pathways, and eventually, the development of next generation rechargeable batteries that surpass the rate performance of the current commercial Li-ion batteries.

15.
Chem Commun (Camb) ; 60(79): 11156-11159, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39291575

RESUMEN

We discovered that employing inappropriate calibration curves for activity evaluation resulted in false positive results. Specifically, an artificial efficiency of hydrogen production is exaggerated by up to 2.2-fold if the calibration curves are misused, leading to considerably high false positive results. Our study highlights the importance of utilizing the correct calibration curve to ensure a true performance, and is beneficial for fostering advancements in the development of thermal-assisted photocatalysis.

16.
J Colloid Interface Sci ; 675: 411-418, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38976967

RESUMEN

Developing highly efficient single-atom catalysts (SACs) for the nitrogen reduction reaction (NRR) to ammonia production has garnered significant attention in the scientific community. However, achieving high activity and selectivity remains challenging due to the lack of innate activity in most existing catalysts or insufficient active site density. This study delves into the potential of M2C12 materials (M = Cr, Ir, Mn, Mo, Os, Re, Rh, Ru, W, Fe, Cu, and Ti) with high transition metal coverage as SACs for NRR using first-principles calculations. Among these materials, Os2C12 exhibited superior catalytic activity for NRR, with a low overpotential of 0.39 V and an Os coverage of up to 72.53 wt%. To further boost its catalytic activity, a nonmetal (NM) atom doping (NM = B, N, O, and S) and C vacancy modification were explored in Os2C12. It is found that the introduction of O enables exceptional catalytic activity, selectivity, and stability, with an even lower overpotential of 0.07 V. Incorporating the O atom disrupted the charge balance of its coordinating C atoms, effectively increasing the positive charge density of the Os-d-orbit-related electronic structure. This promoted strong d-π* coupling between Os and N2H, enhancing N2H adsorption and facilitating NRR processes. This comprehensive study provides valuable insights into NRR catalyst design for sustainable ammonia production and offers a reference for exploring alternative materials in other catalytic reactions.

17.
ACS Nanosci Au ; 4(5): 349-359, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39430377

RESUMEN

Electrochemical semihydrogenation (ESH) of alkynes to alkenes is an appealing technique for producing pharmaceutical precursors and polymer monomers, while also preventing catalyst poisoning by alkyne impurities. Cu is recognized as a cost-effective and highly selective catalyst for ESH, whereas its activity is somewhat limited. Here, from a mechanistic standpoint, we hypothesize that electron-deficient Cu can enhance ESH activity by promoting the rate-determining step of alkene desorption. We test this hypothesis by utilizing Cu-Ag hybrids as electrocatalysts, developed through a welding process of Ag nanoparticles with Cu nanowires. Our findings reveal that these rationally engineered Cu-Ag hybrids exhibit a notable enhancement (2-4 times greater) in alkyne conversion rates compared to isolated Ag NPs or Cu NWs, while maintaining over 99% selectivity for alkene products. Through a combination of operando and computational studies, we verify that the electron-depleted Cu sites, resulting from electron transfer between Ag nanoparticles and Cu nanowires, effectively weaken the adsorption of alkenes, thereby substantially boosting ESH activity. This work not only provides mechanistic insights into ESH but also stimulates compelling strategies involving hybridizing distinct metals to optimize ESH activity.

18.
J Colloid Interface Sci ; 661: 512-519, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308891

RESUMEN

Confronting the challenge of climate change necessitates innovative approaches for the reduction of CO2 emissions. Metal-support interaction has been widely demonstrated to enable greatly improved performances in thermal-catalytic, photocatalytic and electrocatalytic CO2 reduction. However, its applicability and specifically its role in the emerging piezo-electrocatalytic CO2 reduction are unknown, severely hampering the utilizations of piezo-electrocatalysis in CO2 conversion. Herein, by adopting Au particles supported on ZnO (Au/ZnO) as a paradigm, it is found that the metal-support interaction can remarkably improve the separation and transfer of piezo-carriers and enhance CO2 adsorption. As a result, Au/ZnO demonstrates a substantially boosted activity for piezo-electrocatalytic CO2 reduction and the optimal sample exhibits a 37.3% increase in CO yield compared to the pristine ZnO. The integration of metal-support interactions opens a new avenue to the design of advanced piezo-electrocatalysts for CO2 reduction.

19.
Chem Sci ; 15(9): 3255-3261, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425534

RESUMEN

Here we report for the first time the phenomenon of continuously color-tunable electrochemiluminescence (ECL) from individual gold nanoclusters (Au NCs) confined in a porous hydrogel matrix by adjusting the concentration of the co-reactant. Specifically, the hydrogel-confined Au NCs exhibit strong dual-color ECL in an aqueous solution with triethylamine (TEA) as a co-reactant, with a record-breaking quantum yield of 95%. Unlike previously reported Au NCs, the ECL origin of the hydrogel-confined Au NCs is related to both the Au(0) kernel and the Au(i)-S surface. Surprisingly, the surface-related ECL of Au NCs exhibits a wide color-tunable range of 625-829 nm, but the core-related ECL remains constant at 489 nm. Theoretical and experimental studies demonstrate that the color-tunable ECL is caused by the dynamic surface reconstruction of Au NCs and TEA radicals. This work opens up new avenues for dynamically manipulating the ECL spectra of core-shell emitters in biosensing and imaging research.

20.
ACS Sens ; 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39420643

RESUMEN

Label-free surface-enhanced Raman spectroscopy (SERS) is capable of capturing rich compositional information from complex biosamples by providing vibrational spectra that are crucial for biosample identification. However, increasing complexity and subtle variations in biological media can diminish the discrimination accuracy of traditional SERS excited by a single laser wavelength. Herein, we introduce a multiwavelength SERS approach combined with machine learning (ML)-based classification to improve the discrimination accuracy of human urine specimens for bladder cancer (BCa) diagnosis. This strategy leverages the excitation-wavelength-dependent SERS spectral profiles of complex matrices, which are mainly attributed to wavelength-related vibrational changes in individual analytes and differences in the variation ratios of SERS intensity across different wavelengths among various analytes. By capturing SERS fingerprints under multiple excitation wavelengths, we can acquire more comprehensive and unique chemical information on complex samples. Further experimental examinations with clinical urine specimens, supported by ML algorithms, demonstrate the effectiveness of this multiwavelength strategy and improve the diagnostic accuracy of BCa and staging of its invasion with SERS spectra from increasing numbers of wavelengths. The multiwavelength SERS holds promise as a convenient, cost-effective, and broadly applicable technique for the precise identification of complex matrices and diagnosis of diseases based on body fluids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA