Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Med Biol ; 63(17): 175017, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30088809

RESUMEN

Myocardial perfusion (MP) PET imaging plays an important role in risk assessment and stratification of patients with coronary artery disease. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction method incorporating a wavelet-based joint entropy (WJE) prior for MP PET imaging. Using the XCAT phantom, we first simulated three MP PET datasets, one with normal perfusion and the other two with non-transmural and transmural regionally reduced perfusion of the left ventricular myocardium. We then simulated MP PET datasets of the three cases with respiratory and cardiac (RC) motion to represent realistic clinical situations. Moreover, two MR image datasets of the same subjects without and with RC motion were simulated without the perfusion defect correspondence. Using the simulated data, the proposed method was evaluated quantitatively in terms of noise-contrast tradeoff, and compared with the post-smoothed maximum-likelihood and the conventional MAP methods. The detectability of perfusion defects with various myocardial coverage was also evaluated through receiver operating characteristic analysis using the channelized Hotelling observer. The results demonstrated that the WJE-MAP method improved the noise-contrast tradeoff, leading to significantly enhanced defect detectability over the other two methods in the non-transmural defects, while maintaining comparable performance in the transmural defect. In addition to the simulation study, the proposed method was further evaluated on the acquired PET/MRI data of a Jaszczak phantom with cold rods. Compared with the other two methods, the WJE-MAP method improved the tradeoff between noise and contrast in the smaller rods, thereby indicating its clinical potential for improving defect detectability in MP PET/MR imaging.


Asunto(s)
Entropía , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión Miocárdica/métodos , Miocardio , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Algoritmos , Humanos , Curva ROC
2.
Phys Med Biol ; 62(11): 4496-4513, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28252451

RESUMEN

ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Corazón/fisiopatología , Movimiento (Física) , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Técnicas de Imagen Sincronizada Respiratorias , Volumen Sistólico/fisiología , Corazón/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Perfusión Miocárdica/métodos , Función Ventricular Izquierda/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA