Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chemistry ; : e202400541, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739757

RESUMEN

The in situ generation of active photoredox organic catalysts upon anion-binding co-catalysis by making use of the ionic nature of common photosensitizers is reported. Hence, the merge of anion-binding and photocatalysis permitted the modulation of the photocatalytic activity of simple acridinium halide salts, building an effective anion-binding - photoredox ion pair complex able to promote a variety of visible light driven transformations, such as anti-Markovnikov addition to olefins, Diels-Alder and the desilylative C-C bond forming reactions. Anion-binding studies, together with steady-state and time-resolved spectroscopy analysis, supported the postulated ion pair formation between the thiourea hydrogen-bond donor organocatalyst and the acridinium salt, which proved essential for unlocking the photocatalytic activity of the photosensitizer.

2.
Chemistry ; 29(6): e202203353, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36314234

RESUMEN

A novel visible light promoted formation of CAryl- S bonds through electron donor-acceptor (EDA) complexes of alkylamines with 5- and 6-membered (hetero)arene halides is presented. This represents the first EDA-based thiolation method not relying on π-π or a thiolate-anion-π interactions and provides a facile access to heteroarene radicals, which can be suitably trapped by disulfide derivatives to form the corresponding versatile arylsulfides. Mechanistic investigations on the aspects of the whole process were conducted by spectroscopic measurements, demonstrating the hypothesized EDA complex formation. Moreover, the strength of this method has been proven by a gram-scale synthesis of thiolated products and the late-stage derivatization of an anticoagulant drug.

3.
European J Org Chem ; 26(1): e202200950, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37065706

RESUMEN

Asymmetric organocatalysis has experienced a long and spectacular way since the early reports over a century ago by von Liebig, Knoevenagel and Bredig, showing that small (chiral) organic molecules can catalyze (asymmetric) reactions. This was followed by impressive first highly enantioselective reports in the second half of the last century, until the hype initiated in 2000 by the milestone publications of MacMillan and List, which finally culminated in the 2021 Nobel Prize in Chemistry. This short Perspective aims at providing a brief introduction to the field by first looking on the historical development and the more classical methods and concepts, followed by discussing selected advanced recent examples that opened new directions and diversity within this still growing field.

4.
Molecules ; 28(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049905

RESUMEN

Atropisomers are fascinating objects of study by themselves for chemists but also find applications in various sub-fields of applied chemistry. Obtaining them in enantiopure form is far from being a solved challenge, and the past decades has seen a surge of methodological developments in that direction. Among these strategies, oxidative aromatization with central-to-axial conversion of chirality has gained increasing popularity. It consists of the oxidation of a cyclic non-aromatic precursors into the corresponding aromatic atropisomers. This review proposes a critical analysis of this research field by delineating it and discussing its historical background and its present state of the art to draw potential future development directions.

5.
Angew Chem Int Ed Engl ; 62(35): e202304781, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37228095

RESUMEN

A new approach towards highly enantioselective halogen-bonding catalysis has been developed. To circumvent the intrinsic issues of the nature of the halogen-bond (XB) and the resultant unresolved limitations in asymmetric catalysis, fine-tuned halogen-halogen interactions between the substrate and XB-donor were designed to preorganize the substrate in the catalyst's cavity and boost enantiocontrol. The present strategy exploits both the electron cloud (Lewis base site) and the sigma (σ)-hole site of the halogen substituent of the substrates to form a tight catalyst-substrate-counteranion chiral complex, thus enabling a controlled induction of high levels of chirality transfer. Remarkable enantioselectivities of up to 95 : 5 e.r. (90 % ee) have been achieved in a model dearomatization reaction of halogen-substituted (iso)quinolines with tetrakis-iodotriazole multidentate anion-binding catalysts.

6.
Org Biomol Chem ; 20(14): 2896-2908, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319061

RESUMEN

In this work, an efficient oxidative C(sp3)-H Ugi-azide multicomponent reaction of cyclic benzylic amines to the corresponding α-tetrazolo compounds using a TEMPO salt as mild hydride abstractor-type oxidant is reported. This simple one-pot approach allows the direct functionalization of N-heterocycles such as tetrahydroisoquinolines with a variety of isocyanides and NaN3 as a practical azide source. The reaction proceeds at room temperature and without the need of acid additives, allowing for the use of sensitive substrates, while minimizing isocyanide polymerization to provide the desired heterocycle-tetrazole products in synthetically useful yields (up to 99%).


Asunto(s)
Azidas , Cianuros , Azidas/química , Cianuros/química , Metales , Estructura Molecular , Estrés Oxidativo
7.
Chemistry ; 27(7): 2315-2320, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33210767

RESUMEN

Halogen bonding represents a powerful tool in the field of noncovalent interactions. However, applications in enantioselective recognition and catalysis remain almost nonexistent, due in part to the distinct features of halogen bonds, including long covalent and noncovalent bond distances and high directionality. Herein, this work presents a novel chiral tetrakis-iodo-triazole structure as a neutral halogen bond donor for both chiral anion-recognition and enantioinduction in ion-pair organocatalysis. NMR-titration studies revealed significant differences in anion affinity between the halogen bonding receptor and its hydrogen bonding parent. Selective recognition of chiral dicarboxylates and asymmetric induction in a benchmark organocatalytic reaction were demonstrated using the halogen bond donor. Inversions in the absolute sense of chiral recognition, enantioselectivity, and chiroptical properties relative to the related hydrogen donor were observed. Computational modeling suggested that these effects were the result of distinct anion-binding modes for the halogen- versus hydrogen-bond donors.

8.
Molecules ; 26(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34833996

RESUMEN

Mukaiyama aldol, Mannich, and Michael reactions are arguably amongst the most important C-C bond formation processes and enable access to highly relevant building blocks of various natural products. Their vinylogous extensions display equally high potential in the formation of important key intermediates featuring even higher functionalization possibilities through an additional conjugated C-C double bond. Hence, it is much desired to develop highly selective vinylogous methods in order to enable unconventional, more efficient asymmetric syntheses of biologically active compounds. In this regard, silyl-dienolates were discovered to display high regioselectivities due to their tendency toward γ-additions. The control of the enantio- and diastereoinduction of these processes have been for a long time dominated by transition metal catalysis, but it received serious competition by the application of organocatalytic approaches since the beginning of this century. In this review, the organocatalytic applications of silyl-dienolates in asymmetric vinylogous C-C bond formations are summarized, focusing on their scope, characteristics, and limitations.

9.
Angew Chem Int Ed Engl ; 60(10): 5102-5107, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33306858

RESUMEN

An enantioselective anion-binding organocatalytic approach with versatile N,N-dialkylhydrazones (DAHs) as polarity-reversed (umpolung) nucleophiles is presented. For the application of this concept, a highly ordered hydrogen-bond (HB) network between a carefully selected CF3 -substituted triazole-based multidentate HB-donor catalyst, the ionic substrate and the hydrazone in a supramolecular chiral ion-pair complex was envisioned. The formation of such a network was further supported by both experimental and computational studies, which showed the crucial role of the anion as a template unit. The asymmetric Reissert-type reaction of quinolines as a model test reaction chemoselectively delivered highly enantiomerically enriched hydrazones (up 95:5 e.r.) that could be further derivatized to value-added compounds with up to three stereocenters.

10.
Chemistry ; 26(72): 17598-17603, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-32881167

RESUMEN

H-bond donor catalysts able to modulate the reactivity of ionic substrates for asymmetric reactions have gained great attention in the past years, leading to the development of cooperative multidentate H-bonding supramolecular structures. However, there is still a lack of understanding of the forces driving the ion recognition and catalytic performance of these systems. Herein, insight into the cooperativity nature, anion binding strength, and folding mechanism of a model chiral triazole catalyst is presented. Our combined experimental and computational study revealed that multi-interaction catalysts exhibiting weak binding energies (≈3-4 kcal mol-1 ) can effectively recognize ionic substrates and induce chirality, while strong dependencies on the temperature and solvent were quantified. These results are key for the future design of catalysts with optimal anion binding strength and catalytic activity in target reactions.

11.
J Org Chem ; 84(20): 12992-13002, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31460755

RESUMEN

A simple and mild Cu-catalyzed oxidative three-component oxidative Ugi-type method for the synthesis of a variety of substituted imides has been developed. In this direct imidation approach, benzoyl peroxide serves as both the oxidant and the carboxylate source, allowing not only the functionalization of C(sp3)-H bonds in α-position to an amine but also benzylic substrates. This procedure presents a wide substrate-type and functional group tolerance. Moreover, the mildness of the method permitted us to extend its application to the late stage functionalization of complex natural products such as the alkaloids brucine and strychnine, leading to interesting highly functionalized imide derivatives. On the basis of experimental and computational studies, a plausible mechanism has been proposed.

12.
Org Biomol Chem ; 17(22): 5475-5489, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31115431

RESUMEN

Over the last decade, a variety of methodologies for the direct functionalization of C-H bonds have been developed. Among others, visible light photoredox reactions have recently emerged as one of the most efficient and highly selective processes for the direct introduction of a functionality into organic molecules. Easy reaction setups, as well as mild reaction conditions, make this approach superior to other methodologies applying transition metals or strong oxidants, in terms of both costs and substrate and functional group tolerance. In this review, the recent developments in organophotocatalyzed C-H bond functionalization reactions are presented.

13.
Angew Chem Int Ed Engl ; 58(10): 3217-3221, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30427107

RESUMEN

A general and highly enantioselective synthesis of oxygen heterocycles from readily available in situ generated pyrylium derivatives has been realized by embracing a multi-coordination approach with helical anion-binding tetrakistriazole catalysts. The high activity of the tetrakistriazole (TetraTri) catalysts, with distinct confined anion-binding pockets, allows for remarkably low catalyst loadings (down to 0.05 mol %), while providing a simple access to chiral chromanones and dihydropyrones in high enantioselectivities (up to 98:2 e.r.). Moreover, experimental and theoretical studies provide new insights into the hydrogen-donor ability and key binding interactions of the TetraTri catalysts and its host:guest complexes, suggesting the formation of a 1:3 species.

14.
Chemistry ; 24(48): 12509-12514, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29882609

RESUMEN

A newly designed class of acridinium-based organophotocatalysts bearing an imide group at the C9-position is presented. To achieve these unprecedented structures, a synthetic strategy based on a novel straightforward oxidative Ugi-type reaction at the benzylic position of C9-unsubstituted acridanes was developed. The introduction of the imide-unit affords a notable photocatalytic activity enhancement, allowing efficient transformations in different oxidative and reductive visible-light catalytic reactions.

15.
Chemistry ; 23(25): 5983-5987, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28111819

RESUMEN

The first enantioselective synthesis of chiral heterocyclic α-amino phosphonates by nucleophilic dearomatization of quinolines and pyridines using an anion-binding organocatalysis approach is described. Chiral tetrakistriazoles were employed as efficient hydrogen-bond donor catalysts by forming a chiral close ion-pair with the in situ formed N-acyl salts and 2,2,2-trichlorethoxycarbonyl chloride (TrocCl). The ion-pair was subsequently treated with various phosphorus nucleophiles, such as silyl-protected dialkyl- and trialkylphosphites. Thus, the corresponding products were obtained in complete or high regioselectivities and up to 97:3 e.r. for quinolines or up to 89:11 e.r. for the more challenging pyridine substrates. This method allows for rapid access to substituted chiral cyclic α-amino phosphonates, which can be easily transformed into phosphonic acid derivatives.

16.
Chemistry ; 22(11): 3785-93, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26743138

RESUMEN

Easily accessible and tunable chiral triazoles have been introduced as a novel class of C-H bond-based H-donors for anion-binding organocatalysis. They have proven to be effective catalysts for the dearomatization reaction of different N-heteroarenes. Although this dearomatization approach represents a powerful strategy to build chiral heterocycles, to date only a few catalytic methods to this end exist. In this work, the organocatalyzed enantioselective Reissert-type dearomatization of isoquinoline derivatives employing a number of structurally diverse chiral triazoles as anion-binding catalysts was realized. The here presented method was employed to synthesize a number of chiral 1,2-dihydroisoquinoline substrates with an enantioselectivity up to 86:14 e.r. Moreover, a thorough study of the determining parameters affecting the activity of this type of anion- binding catalysts was carried out.

17.
Angew Chem Int Ed Engl ; 54(30): 8823-7, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26111052

RESUMEN

The asymmetric dearomatization of N-heterocycles is an important synthetic method to gain bioactive and synthetically valuable chiral heterocycles. However, the catalytic enantio- and regioselective dearomatization of the simplest six-membered-ring N-heteroarenes, the pyridines, is still very challenging. The first anion-binding-catalyzed, highly enantioselective nucleophilic dearomatization of pyridines with triazole-based H-bond donor catalysts is presented. Contrary to other more common NH-based H-bond donors, this type of organocatalyst shows a prominent higher C2-regioselectivity and is able to promote high enantioinductions via formation of a close chiral anion-pair complex with a preformed N-acyl pyridinium ionic intermediate. This method offers a straightforward and useful synthetic approach to chiral N-heterocycles from abundant and readily available pyridines.


Asunto(s)
Piridinas/química , Triazoles/química , Aniones/química , Catálisis , Estereoisomerismo
18.
J Org Chem ; 78(12): 6050-64, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23705827

RESUMEN

A straightforward iron-catalyzed divergent oxidative tandem synthesis of dihydroquinazolines and quinolines from N-alkylanilines using a TEMPO oxoammonium salt as a mild and nontoxic oxidant has been developed. Fe(OTf)2 was the Lewis acid catalyst of choice for the formation of dihydroquinazolines, whereas FeCl3 led to better results for the synthesis of quinolines. This divergent approach implies that, for both syntheses, direct oxidative functionalization of a α-C(sp(3))-H bond of the N-alkylanilines occurs, leading to C-N bond formation or C-C bond formation upon homocondensation or reaction with simple olefins, respectively. Cyclization followed by a final oxidation generates these classes of interesting bioactive heterocycles in one synthetic transformation. Additionally, the one-pot multicomponent synthesis of quinolines from anilines, aldehydes, and olefins has also been successfully developed under these mild oxidative conditions.

19.
Chem Commun (Camb) ; 59(23): 3360-3372, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36790499

RESUMEN

Catalytic asymmetric dearomatization of heteroaromatic compounds has received considerable attention in the last few years, since it allows for a fast expansion of the chemical space by converting relatively simple, flat molecules into complex, three dimensional structures with added value. Among different approaches, remarkable progress has been recently achieved by the development of organocatalytic dearomatization methods. In particular, the anion-binding catalysis technology has emerged as a potent alternative to metal catalysis, which together with the design of novel, tunable anion-receptor motifs, has provided new entries for the enantioselective dearomatization of heteroarenes through a chiral contact ion pair formation by activation of the electrophilic reaction partner. In this feature, we provide an overview of the different methodologies and advances in anion-binding catalyzed dearomatization reactions of different heteroarenes.

20.
Chem Commun (Camb) ; 59(40): 6032-6035, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37099306

RESUMEN

A solvent-dependent, divergent synthesis of highly functionalized N,S-heterocycles presenting a thiazoline and an isoquinuclidine (DCE as solvent) or tetrahydroisoquinoline (DMF as solvent) scaffolds by cyclization reactions of isoquinolinium 1,4-zwitterionic thiolates is reported. The robustness and applicability of the method are also demonstrated by an efficient 6-times upscaling of the reaction and derivatization of the thiazoline-isoquinuclidine derivatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA