Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 19(42): e2301596, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37329205

RESUMEN

Porphyrins, a type of heterocyclic aromatic compounds consisting of tetrapyrroles connected by four substituted methine groups, are appealing building blocks for solar energy applications. However, their photosensitization capability is limited by their large optical energy gap, which results in a mismatch in absorption toward efficient harvesting of the solar spectrum. Porphyrin π-extension by edge-fusing with nanographenes can be employed for narrowing their optical energy gap from 2.35 to 1.08 eV, enabling the development of porphyrin-based panchromatic dyes with an optimized energy onset for solar energy conversion in dye-sensitized solar fuel and solar cell configurations. By combining time-dependent density functional theory with fs transient absorption spectroscopy, it is found that the primary singlets, which are delocalized across the entire aromatic part, are transferred into metal centred triplets in only 1.2 ps; and subsequently, relax toward ligand-delocalized triplets. This observation implies that the decoration of the porphyrin moiety with nanographenes, while having a large impact on the absorption onset of the novel dye, promotes the formation of a ligand-centred lowest triplet state of large spatial extension, potentially interesting for boosting interactions with electron scavengers. These results reveal a design strategy for broadening the applicability of porphyrin-based dyes in optoelectronics.

2.
Angew Chem Int Ed Engl ; 61(18): e202201088, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35192234

RESUMEN

The bottom-up synthesis of an unprecedentedly large cove-edged nanographene, hexa-peri-hexabenzo-bis-peri-octacene (HBPO), is reported in this work. Chiral high-performance liquid chromatography and density functional theory (DFT) calculations revealed multiple conformations in solution. Two different molecular conformations, "waggling" and "butterfly", were found in crystals by X-ray crystallography, and the selectivity of conformations could be tuned by solvents. The optoelectronic properties of HBPO were investigated by UV/Vis absorption and fluorescence spectroscopies, cyclic voltammetry, and DFT calculations. The contorted geometry and branched alkyl groups suppress the aggregation of HBPO in solution, leading to a high fluorescence quantum yield of 79 %. The optical-gain properties were explored through transient absorption and amplified spontaneous emission spectroscopies, which enrich the choices of edge structures for potential applications in laser cavities.

3.
Nanotechnology ; 32(2): 025601, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-32906087

RESUMEN

The mechanisms of plasma-assisted molecular beam epitaxial growth of GaN on muscovite mica were investigated. Using a battery of techniques, including scanning and transmission electron microscopy, atomic force microscopy, cathodoluminescence, Raman spectroscopy and x-ray diffraction, it was possible to establish that, in spite of the lattice symmetry mismatch, GaN grows in epitaxial relationship with mica, with the [11-20] GaN direction parallel to [010] direction of mica. GaN layers could be easily detached from the substrate via the delamination of the upper layers of the mica itself, discarding the hypothesis of a van der Waals growth mode. Mixture of wurtzite (hexagonal) and zinc blende (ZB) (cubic) crystallographic phases was found in the GaN layers with ratios highly dependent on the growth conditions. Interestingly, almost pure ZB GaN epitaxial layers could be obtained at high growth temperature, suggesting the existence of a specific GaN nucleation mechanism on mica and opening a new way to the growth of the thermodynamically less stable ZB GaN phase.

4.
J Phys Chem Lett ; : 10366-10374, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39374120

RESUMEN

Metalloporphyrins based on open-shell transition metals, such as Ni(II), exhibit typically fast excited-state relaxation. In this work, we shed light into the nonradiative relaxation mechanism in a nanographene-Ni(II) porphyrin conjugate. Variable temperature transient absorption and global fit analysis are combined to produce a picture of the relaxation pathways. At room temperature, photoexcitation of the lowest π-π* transition is followed by vibrational cooling in 1.6 ps, setting a short 20 ps temporal window wherein a small fraction of relaxed singlets radiatively decay to the ground state before intersystem crossing proceeds. Following intersystem crossing, triplets relax rapidly to the ground state (S0) in a few tens of picoseconds. By performing measurements at low temperature, we provide evidence for a competition between two terminal relaxation pathways from the lowest (metal-centered) triplet to the ground state: a slow ground state relaxation process proceeding in time scales beyond 1.6 ns and a faster pathway dictated by a sloped conical intersection, which is thermally accessible at room temperature from the triplet state. The overall triplet decay at a given temperature is dictated by the interplay of these two contributions. This observation bears significance in understanding the underlying fast relaxation processes in Ni-based molecules and related transition metal complexes, opening avenues for potential applications for energy harvesting and optoelectronics.

5.
Mater Horiz ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39355934

RESUMEN

Highly emissive Ag2S nanocrystals (NCs) passivated with a gradated shell incorporating Se and Zn were synthesized in air, and the temperature dependence of their photoluminescence quantum yield (PLQY) was quantified in both organic and aqueous media at ∼1200 nm. The relevance of this parameter, measured at physiological temperatures, is highlighted for applications that rely on the near infrared (NIR) photoluminescence of NCs, such as deep NIR imaging or luminescence nanothermometry. Hyperspectral NIR imaging shows that Ag2S-based NCs with a PLQY in organic media of about 10% are inefficient for imaging at 40 °C through 20 mm thick tissue with low laser irradiation power densities. In contrast, water-transferred Ag2S-based NCs with an initial PLQY of 2% in water exhibit improved robustness against temperature changes, enabling improved imaging performance.

6.
Nanoscale Horiz ; 6(7): 551-558, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33889898

RESUMEN

The building of van der Waals heterostructures and the decoration of 2D materials with organic molecules share a common goal: to obtain ultrathin materials with tailored properties. Performing controlled chemistry on van der Waals heterostructures would add an extra level of complexity, providing a pathway towards 2D-2D-0D mixed-dimensional heterostructures. Here we show that thiol-ene-like "click" chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure with maleimide reagents. ATR-IR and NMR analyses corroborate the Michael addition mechanism via the formation of a S-C covalent bond, while Raman and HR-TEM show that the SnS2-PbS alternating structure of franckeite is preserved, and suggest that SnS2 reacts preferentially, which is confirmed through XPS. We illustrate how this methodology can be used to add functional molecular moieties by decorating franckeite with porphyrins. UV-vis-NIR spectroscopy confirms that the chromophore ground state remains operative, showing negligible ground-state interactions with the franckeite. Excited-state interactions across the hybrid interface are revealed. Time-resolved photoluminescence confirms the presence of excited-state deactivation in the linked porphyrin ascribed to energy transfer to the franckeite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA