Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 151(1): 194-205, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23000270

RESUMEN

Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Epigénesis Genética , Polen/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , Animales , Arabidopsis/crecimiento & desarrollo , Elementos Transponibles de ADN , Mamíferos/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Semillas/genética , Semillas/metabolismo
2.
Nature ; 569(7756): 361-367, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959515

RESUMEN

Here we delineate the ontogeny of the mammalian endoderm by generating 112,217 single-cell transcriptomes, which represent all endoderm populations within the mouse embryo until midgestation. We use graph-based approaches to model differentiating cells, which provides a spatio-temporal characterization of developmental trajectories and defines the transcriptional architecture that accompanies the emergence of the first (primitive or extra-embryonic) endodermal population and its sister pluripotent (embryonic) epiblast lineage. We uncover a relationship between descendants of these two lineages, in which epiblast cells differentiate into endoderm at two distinct time points-before and during gastrulation. Trajectories of endoderm cells were mapped as they acquired embryonic versus extra-embryonic fates and as they spatially converged within the nascent gut endoderm, which revealed these cells to be globally similar but retain aspects of their lineage history. We observed the regionalized identity of cells along the anterior-posterior axis of the emergent gut tube, which reflects their embryonic or extra-embryonic origin, and the coordinated patterning of these cells into organ-specific territories.


Asunto(s)
Endodermo/citología , Endodermo/embriología , Intestinos/citología , Intestinos/embriología , Análisis de la Célula Individual , Animales , Blastocisto/citología , Tipificación del Cuerpo , Diferenciación Celular , Linaje de la Célula , Femenino , Gastrulación , Masculino , Ratones
3.
Cytometry A ; 99(1): 42-50, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175460

RESUMEN

The impact of the COVID-19 pandemic on training and Shared Resource Laboratory (SRL) operations such as staffing, facility access, and social distancing, has affected facilities around the globe to different degrees based on restrictions set by various geographical and institutional settings. With these restrictions come unique challenges regarding user and staff training and education, for both theory and practice. Most notably, limitations in facility access, occupancy, staffing availability, network restrictions and trainee engagement call for innovative solutions for training when traditional in-person options are not feasible. Through the use of remote access tools and prerecorded educational and training materials, SRLs are able to overcome these obstacles. Here, we focus on readily available technologies and general guidelines that SRLs in different environments can use for remote cytometry training and education, while highlighting key obstacles that still remain. Although SRLs may face initial struggles in transitioning trainings to a virtual format, remote technologies provide unique opportunities to advance current training programs. © 2020 International Society for Advancement of Cytometry.


Asunto(s)
COVID-19/prevención & control , Laboratorios/tendencias , Admisión y Programación de Personal/tendencias , Distanciamiento Físico , Enseñanza/tendencias , Teletrabajo/tendencias , COVID-19/epidemiología , Humanos , Pandemias/prevención & control , Flujo de Trabajo
4.
Molecules ; 26(12)2021 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205347

RESUMEN

PURPOSE: Vascular targeted photodynamic therapy (VTP) is a nonsurgical tumor ablation approach used to treat early-stage prostate cancer and may also be effective for upper tract urothelial cancer (UTUC) based on preclinical data. Toward increasing response rates to VTP, we evaluated its efficacy in combination with concurrent PD-1 inhibitor/OX40 agonist immunotherapy in a urothelial tumor-bearing model. EXPERIMENTAL DESIGN: In mice allografted with MB-49 UTUC cells, we compared the effects of combined VTP with PD-1 inhibitor/OX40 agonist with those of the component treatments on tumor growth, survival, lung metastasis, and antitumor immune responses. RESULTS: The combination of VTP with both PD-1 inhibitor and OX40 agonist inhibited tumor growth and prolonged survival to a greater degree than VTP with either immunotherapeutic individually. These effects result from increased tumor infiltration and intratumoral proliferation of cytotoxic and helper T cells, depletion of Treg cells, and suppression of myeloid-derived suppressor cells. CONCLUSIONS: Our findings suggest that VTP synergizes with PD-1 blockade and OX40 agonist to promote strong antitumor immune responses, yielding therapeutic efficacy in an animal model of urothelial cancer.


Asunto(s)
Receptor de Muerte Celular Programada 1/agonistas , Receptores OX40/agonistas , Neoplasias Urológicas/inmunología , Neoplasias Urológicas/terapia , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad/efectos de los fármacos , Inmunoterapia/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Fotoquimioterapia/métodos , Linfocitos T/efectos de los fármacos , Neoplasias Urológicas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
5.
Eur J Nutr ; 58(1): 113-130, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29151137

RESUMEN

PURPOSE: Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. METHODS: BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MSn. BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. RESULTS: Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. CONCLUSIONS: BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Rubus/metabolismo , Animales , Células Cultivadas , Cromatografía Liquida , Humanos , Técnicas In Vitro , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Fármacos Neuroprotectores/metabolismo , Extractos Vegetales/metabolismo , Reacción en Cadena de la Polimerasa , Polifenoles/metabolismo
6.
Cytometry A ; 91(2): 144-151, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28075531

RESUMEN

Flow cytometry is the tool of choice for high-speed acquisition and analysis of large cell populations, with the tradeoff of lacking intracellular spatial information. Although in the last decades flow cytometry systems that can actually acquire two-dimensional spatial information were developed, some of the limitations remained though, namely constrains related to sample size and lack of depth or dynamic information. The combination of fluidics and light-sheet illumination has the potential to address these limitations. By having cells travelling with the flowing sheath one can, in a controlled fashion, force them at constant speed through the light-sheet enabling the synchronized acquisition of several optical sections, that is, three-dimensional imaging. This approach has already been used for imaging cellular spheroids, plankton, and zebra-fish embryos. In this review, we discuss the known solutions and standing challenges of performing three-dimensional high-throughput imaging of multicellular biological models using fluidics, while retaining cell and organelle-level resolution. © 2017 International Society for Advancement of Cytometry.


Asunto(s)
Citometría de Flujo/métodos , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Animales , Ensayos Analíticos de Alto Rendimiento , Plancton/ultraestructura , Esferoides Celulares/ultraestructura , Pez Cebra
7.
Plant Physiol ; 171(4): 2371-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27356972

RESUMEN

Plant specialized metabolism often presents a complex cell-specific compartmentation essential to accomplish the biosynthesis of valuable plant natural products. Hence, the disclosure and potential manipulation of such pathways may depend on the capacity to isolate and characterize specific cell types. Catharanthus roseus is the source of several medicinal terpenoid indole alkaloids, including the low-level anticancer vinblastine and vincristine, for which the late biosynthetic steps occur in specialized mesophyll cells called idioblasts. Here, the optical, fluorescence, and alkaloid-accumulating properties of C. roseus leaf idioblasts are characterized, and a methodology for the isolation of idioblast protoplasts by fluorescence-activated cell sorting is established, taking advantage of the distinctive autofluorescence of these cells. This achievement represents a crucial step for the development of differential omic strategies leading to the identification of candidate genes putatively involved in the biosynthesis, pathway regulation, and transmembrane transport leading to the anticancer alkaloids from C. roseus.


Asunto(s)
Catharanthus/metabolismo , Separación Celular/métodos , Citometría de Flujo/métodos , Alcaloides de Triptamina Secologanina/metabolismo , Vinblastina/metabolismo , Catharanthus/citología , Células del Mesófilo/citología , Células del Mesófilo/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo
8.
Eur J Immunol ; 45(5): 1414-25, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25678252

RESUMEN

Among human peripheral blood (PB) monocyte (Mo) subsets, the classical CD14(++) CD16(-) (cMo) and intermediate CD14(++) CD16(+) (iMo) Mos are known to activate pathogenic Th17 responses, whereas the impact of nonclassical CD14(+) CD16(++) Mo (nMo) on T-cell activation has been largely neglected. The aim of this study was to obtain new mechanistic insights on the capacity of Mo subsets from healthy donors (HDs) to activate IL-17(+) T-cell responses in vitro, and assess whether this function was maintained or lost in states of chronic inflammation. When cocultured with autologous CD4(+) T cells in the absence of TLR-2/NOD2 agonists, PB nMos from HDs were more efficient stimulators of IL-17-producing T cells, as compared to cMo. These results could not be explained by differences in Mo lifespan and cytokine profiles. Notably, however, the blocking of LFA-1/ICAM-1 interaction resulted in a significant increase in the percentage of IL-17(+) T cells expanded in nMo/T-cell cocultures. As compared to HD, PB Mo subsets of patients with rheumatoid arthritis were hampered in their T-cell stimulatory capacity. Our new insights highlight the role of Mo subsets in modulating inflammatory T-cell responses and suggest that nMo could become a critical therapeutic target against IL-17-mediated inflammatory diseases.


Asunto(s)
Antígeno-1 Asociado a Función de Linfocito/inmunología , Monocitos/inmunología , Células Th17/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Bloqueadores/administración & dosificación , Anticuerpos Monoclonales/administración & dosificación , Artritis/inmunología , Artritis Reumatoide/inmunología , Técnicas de Cocultivo , Citocinas/biosíntesis , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/inmunología , Interleucina-17/biosíntesis , Receptores de Lipopolisacáridos/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/clasificación , Proteína Adaptadora de Señalización NOD2/agonistas , Receptores de IgG/metabolismo , Receptores Mensajeros de Linfocitos/antagonistas & inhibidores , Líquido Sinovial/citología , Líquido Sinovial/inmunología , Receptor Toll-Like 2/agonistas
9.
Cytometry A ; 89(11): 1017-1030, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27813253

RESUMEN

The purpose of this document is to define minimal standards for a flow cytometry shared resource laboratory (SRL) and provide guidance for best practices in several important areas. This effort is driven by the desire of International Society for the Advancement of Cytometry (ISAC) members in SRLs to define and maintain standards of excellence in flow cytometry, and act as a repository for key elements of this information (e.g. example SOPs/training material, etc.). These best practices are not intended to define specifically how to implement these recommendations, but rather to establish minimal goals for an SRL to address in order to achieve excellence. It is hoped that once these best practices are established and implemented they will serve as a template from which similar practices can be defined for other types of SRLs. Identification of the need for best practices first occurred through discussions at the CYTO 2013 SRL Forum, with the most important areas for which best practices should be defined identified through several surveys and SRL track workshops as part of CYTO 2014. © 2016 International Society for Advancement of Cytometry.


Asunto(s)
Citometría de Flujo/normas , Laboratorios/normas , Guías de Práctica Clínica como Asunto/normas
10.
Methods ; 82: 64-73, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25747337

RESUMEN

Sorting performance can be evaluated with regard to Purity, Yield and/or Recovery of the sorted fraction. Purity is a check on the quality of the sample and the sort decisions made by the instrument. Recovery and Yield definitions vary with some authors regarding both as how efficient the instrument is at sorting the target particles from the original sample, others distinguishing Recovery from Yield, where the former is used to describe the accuracy of the instrument's sort count. Yield and Recovery are often neglected, mostly due to difficulties in their measurement. Purity of the sort product is often cited alone but is not sufficient to evaluate sorting performance. All of these three performance metrics require re-sampling of the sorted fraction. But, unlike Purity, calculating Yield and/or Recovery calls for the absolute counting of particles in the sorted fraction, which may not be feasible, particularly when dealing with rare populations and precious samples. In addition, the counting process itself involves large errors. Here we describe a new metric for evaluating instrument sort Recovery, defined as the number of particles sorted relative to the number of original particles to be sorted. This calculation requires only measuring the ratios of target and non-target populations in the original pre-sort sample and in the waste stream or center stream catch (CSC), avoiding re-sampling the sorted fraction and absolute counting. We called this new metric Rmax, since it corresponds to the maximum expected Recovery for a particular set of instrument parameters. Rmax is ideal to evaluate and troubleshoot the optimum drop-charge delay of the sorter, or any instrument related failures that will affect sort performance. It can be used as a daily quality control check but can be particularly useful to assess instrument performance before single-cell sorting experiments. Because we do not perturb the sort fraction we can calculate Rmax during the sort process, being especially valuable to check instrument performance during rare population sorts.


Asunto(s)
Separación Celular/normas , Citometría de Flujo/normas , Separación Celular/estadística & datos numéricos , Citometría de Flujo/estadística & datos numéricos , Control de Calidad
11.
J Microencapsul ; 33(4): 315-22, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27189857

RESUMEN

The objective of this work is to produce doxorubicin-loaded galactose-conjugated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) to be specifically recognised by human hepatoma cellular carcinoma (Hep G2) cells and assess NPs cytotoxicity. Doxorubicin-unloaded and doxorubicin-loaded galactose-conjugated PLGA NPs were prepared using an emulsion method and characterised for morphology, size, drug release behaviour, Hep G2 recognition and cell cytotoxicity. The produced doxorubicin-loaded PLGA-galactose-conjugate nanoparticles (PLGA-GAL NPs) are spherical in shape with a size of 365 ± 74 nm, a drug encapsulation efficiency of 69% and released in a biphasic pattern with higher release rates at pH 5. In vitro cell studies confirmed the specific interaction between the receptors of Hep G2 and the PLGA-GAL NPs. Cell cytotoxicity tests showed that unloaded NPs are non-toxic and that doxorubicin-loaded NPs caused a cellular viability decrease of around 80%, therefore representing a promising approach to improve liver-specific drug delivery.


Asunto(s)
Doxorrubicina , Portadores de Fármacos , Galactosa/química , Hepatocitos/metabolismo , Nanopartículas/química , Poliglactina 910/química , Animales , Células CHO , Cricetinae , Cricetulus , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Células Hep G2 , Humanos
12.
Cytometry A ; 87(5): 437-45, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25808846

RESUMEN

The use of flow cytometry in malaria research has increased over the last decade. Most approaches use nucleic acid stains to detect parasite DNA and RNA and require complex multi-color, multi-parameter analysis to reliably detect infected red blood cells (iRBCs). We recently described a novel and simpler approach to parasite detection based on flow cytometric measurement of scattered light depolarization caused by hemozoin (Hz), a pigment formed by parasite digestion of hemoglobin in iRBCs. Depolarization measurement by flow cytometry was described in 1987; however, patent issues restricted its use to a single manufacturer's hematology analyzers until 2009. Although we recently demonstrated that depolarization measurement of Hz, easily implemented on a bench top flow cytometer (Cyflow), provided useful information for malaria work, doubts regarding its application and utility remain in both the flow cytometry and malaria communities, at least in part because instrument manufacturers do not offer the option of measuring depolarized scatter. Under such circumstances, providing other researchers with guidance as to how to do this seemed to offer the most expeditious way to resolve the issue. We accordingly examined how several commercially available flow cytometers (CyFlow SL, MoFLo, Attune and Accuri C6) could be modified to detect depolarization due to the presence of free Hz on solution, or of Hz in leukocytes or erythrocytes from rodent or human blood. All were readily adapted, with substantially equivalent results obtained with lasers emitting over a wide wavelength range. Other instruments now available may also be modifiable for Hz measurement. Cytometric detection of Hz using depolarization is useful to study different aspects of malaria. Adding additional parameters, such as DNA content and base composition and RNA content, can demonstrably provide improved accuracy and sensitivity of parasite detection and characterization, allowing malaria researchers and eventually clinicians to benefit from cytometric technology.


Asunto(s)
Citometría de Flujo/métodos , Hemoproteínas/aislamiento & purificación , Malaria/diagnóstico , Animales , Eritrocitos/metabolismo , Eritrocitos/parasitología , Hemoproteínas/metabolismo , Humanos , Leucocitos/metabolismo , Leucocitos/parasitología , Luz , Malaria/metabolismo , Malaria/parasitología
13.
Cytometry A ; 95(6): 598-644, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31207046
14.
Curr Protoc ; 4(2): e986, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38363042

RESUMEN

Cell sorting performance can be evaluated in regard to the purity and recovery of the sorted fractions. The purity provides checks on sample quality, acquisition settings, gating strategy, and the sort decisions made by the instrument, but alone it is not sufficient to evaluate sorting performance. Recovery, defined here as the number of target particles sorted relative to the number of original target particles to be sorted, is a key metric of sort fitness and performance but is often neglected due to difficulties in its measurement. Both purity and recovery require re-sampling of the sorted fraction, but unlike determining purity, calculating recovery calls for the absolute counting of particles in the sorted fraction that comes with large errors, and may not be feasible for rare populations or precious samples. Here, we describe a recently developed metric and method for calculating sort recovery called Rmax, representing the maximum expected recovery for a particular set of instrument settings. Rmax calculation avoids re-sampling of the total sorted fraction and absolute counting, being instead based on the ratios of target and non-target populations in the original pre-sort sample and in the waste stream or center stream catch. The Rmax method is ideal to evaluate and troubleshoot the optimum drop-charge delay of the sorter or any instrument-related failures that will affect sort performance. It can be used as a daily quality control check but can be particularly useful to assess instrument fitness before single-cell or rare population sorts. Because the sorted fraction is not perturbed, we can calculate Rmax during the sort run. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Evaluating sorter setup with Rmax Basic Protocol 2: Finding the maximum Rmax: scanning over the drop charge delay Alternate Protocol: Finding the maximum Rmax for cells: scanning over the drop charge delay Basic Protocol 3: Estimating sorted cell number with Rmax.


Asunto(s)
Citometría de Flujo , Citometría de Flujo/métodos , Separación Celular/métodos , Movimiento Celular , Recuento de Células , Control de Calidad
15.
Front Immunol ; 15: 1374943, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605953

RESUMEN

Introduction: In vivo studies of cancer biology and assessment of therapeutic efficacy are critical to advancing cancer research and ultimately improving patient outcomes. Murine cancer models have proven to be an invaluable tool in pre-clinical studies. In this context, multi-parameter flow cytometry is a powerful method for elucidating the profile of immune cells within the tumor microenvironment and/or play a role in hematological diseases. However, designing an appropriate multi-parameter panel to comprehensively profile the increasing diversity of immune cells across different murine tissues can be extremely challenging. Methods: To address this issue, we designed a panel with 13 fixed markers that define the major immune populations -referred to as the backbone panel- that can be profiled in different tissues but with the option to incorporate up to seven additional fluorochromes, including any marker specific to the study in question. Results: This backbone panel maintains its resolution across different spectral flow cytometers and organs, both hematopoietic and non-hematopoietic, as well as tumors with complex immune microenvironments. Discussion: Having a robust backbone that can be easily customized with pre-validated drop-in fluorochromes saves time and resources and brings consistency and standardization, making it a versatile solution for immuno-oncology researchers. In addition, the approach presented here can serve as a guide to develop similar types of customizable backbone panels for different research questions requiring high-parameter flow cytometry panels.


Asunto(s)
Colorantes Fluorescentes , Neoplasias , Animales , Ratones , Citometría de Flujo/métodos , Neoplasias/metabolismo , Microambiente Tumoral
16.
bioRxiv ; 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37609261

RESUMEN

Cell-intrinsic mechanisms of immunogenicity in ovarian cancer (OC) are not well understood. The presence of damaging mutations in the SWI/SNF chromatin remodeling complex, such as the SMARCA4 (BRG1) catalytic subunit, has been associated with improved response to ICB, however the mechanism by which this occurs is unclear. The aim of this current study was to examine the alterations in tumor cell-intrinsic and extrinsic immune signaling caused by SMARCA4 loss. Using OC models with loss-of-function mutations in SMARCA4 , we found that SMARCA4 loss resulted in increased cancer cell-intrinsic immunogenicity, characterized by upregulation of long-terminal RNA repeats such as endogenous retroviruses, increased expression of interferon-stimulated genes, and upregulation of antigen presentation machinery. Notably, this response was dependent on IRF3 signaling, but was independent of the type I interferon receptor. Mice inoculated with cancer cells bearing SMARCA4 loss demonstrated increased activation of cytotoxic T cells and NK cells in the tumor microenvironment as well as increased infiltration with activated dendritic cells. These results were recapitulated when animals bearing SMARCA4- proficient tumors were treated with a BRG1 inhibitor, suggesting that modulation of chromatin remodeling through targeting SMARCA4 may serve as a strategy to reverse immune evasion in OC.

17.
Methods Mol Biol ; 2469: 193-200, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35508840

RESUMEN

Plant organs are built of different cell types, characterized by specific transcription programs and metabolic profiles. The possibility of isolation of such cell types to perform differential transcriptomic, proteomic and metabolomic analyses is highly important to understand many aspects of plant physiology, namely, the structure and regulation of economically valuable specialized metabolic pathways. Here, we describe the isolation of idioblast leaf protoplasts of the medicinal plant Catharanthus roseus by fluorescence-activated cell sorting, taking advantage of the differential autofluorescence properties of those specialized cells.


Asunto(s)
Catharanthus , Células Vegetales , Citometría de Flujo , Regulación de la Expresión Génica de las Plantas , Células Vegetales/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteómica
18.
Neoplasia ; 28: 100790, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35398668

RESUMEN

Mutations in IDH1 and IDH2 drive the development of gliomas. These genetic alterations promote tumor cell renewal, disrupt differentiation states, and induce stem-like properties. Understanding how this phenotypic reprogramming occurs remains an area of high interest in glioma research. Previously, we showed that IDH mutation results in the development of a CD24-positive cell population in gliomas. Here, we demonstrate that this CD24-positive population possesses striking stem-like properties at the molecular and phenotypic levels. We found that CD24 expression is associated with stem-like features in IDH-mutant tumors, a patient-derived gliomasphere model, and a neural stem cell model of IDH1-mutant glioma. In orthotopic models, CD24-positive cells display enhanced tumor initiating potency compared to CD24-negative cells. Furthermore, CD24 knockdown results in changes in cell viability, proliferation rate, and gene expression that closely resemble a CD24-negative phenotype. Our data demonstrate that induction of a CD24-positive population is one mechanism by which IDH-mutant tumors acquire stem-like properties. These findings have significant implications for our understanding of the molecular underpinnings of IDH-mutant gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Células Madre Neoplásicas , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Antígeno CD24/genética , Antígeno CD24/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mutación , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fenotipo
19.
JCO Precis Oncol ; 6: e2100365, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35235413

RESUMEN

PURPOSE: Mitogen-activated protein kinase pathway-activating mutations occur in the majority of colorectal cancer (CRC) cases and show mutual exclusivity. We identified 47 epidermal growth factor receptor/BRAF inhibitor-naive CRC patients with dual RAS hotspot/BRAF V600E mutations (CRC-DD) from a cohort of 4,561 CRC patients with clinical next-generation sequencing results. We aimed to define the molecular phenotypes of the CRC-DD and to test if the dual RAS hotspot/BRAF V600E mutations coexist within the same cell. MATERIALS AND METHODS: We developed a single-cell genotyping method with a mutation detection rate of 96.3% and a genotype prediction accuracy of 92.1%. Mutations in the CRC-DD cohort were analyzed for clonality, allelic imbalance, copy number, and overall survival. RESULTS: Application of single-cell genotyping to four CRC-DD revealed the co-occurrence of both mutations in the following percentages of cells per case: NRAS G13D/KRAS G12C, 95%; KRAS G12D/NRAS G12V, 48%; BRAF V600E/KRAS G12D, 44%; and KRAS G12D/NRAS G13V, 14%, respectively. Allelic imbalance favoring the oncogenic allele was less frequent in CRC-DD (24 of 76, 31.5%, somatic mutations) compared with a curated cohort of CRC with a single-driver mutation (CRC-SD; 119 of 232 mutations, 51.3%; P = .013). Microsatellite instability-high status was enriched in CRC-DD compared with CRC-SD (23% v 11.4%, P = .028). Of the seven CRC-DD cases with multiregional sequencing, five retained both driver mutations throughout all sequenced tumor sites. Both CRC-DD cases with discordant multiregional sequencing were microsatellite instability-high. CONCLUSION: Our findings indicate that dual-driver mutations occur in a rare subset of CRC, often within the same tumor cells and across multiple tumor sites. Their presence and a lower rate of allelic imbalance may be related to dose-dependent signaling within the mitogen-activated protein kinase pathway.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Neoplasias Colorrectales/genética , Humanos , Inestabilidad de Microsatélites , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
20.
Sci Transl Med ; 14(646): eabj2829, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35613281

RESUMEN

Microbial diversity is associated with improved outcomes in recipients of allogeneic hematopoietic cell transplantation (allo-HCT), but the mechanism underlying this observation is unclear. In a cohort of 174 patients who underwent allo-HCT, we demonstrate that a diverse intestinal microbiome early after allo-HCT is associated with an increased number of innate-like mucosal-associated invariant T (MAIT) cells, which are in turn associated with improved overall survival and less acute graft-versus-host disease (aGVHD). Immune profiling of conventional and unconventional immune cell subsets revealed that the prevalence of Vδ2 cells, the major circulating subpopulation of γδ T cells, closely correlated with the frequency of MAIT cells and was associated with less aGVHD. Analysis of these populations using both single-cell transcriptomics and flow cytometry suggested a shift toward activated phenotypes and a gain of cytotoxic and effector functions after transplantation. A diverse intestinal microbiome with the capacity to produce activating ligands for MAIT and Vδ2 cells appeared to be necessary for the maintenance of these populations after allo-HCT. These data suggest an immunological link between intestinal microbial diversity, microbe-derived ligands, and maintenance of unconventional T cells.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Células T Invariantes Asociadas a Mucosa , Humanos , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA