Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 613(7943): 292-297, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631651

RESUMEN

The recovery of long-term climate proxy records with seasonal resolution is rare because of natural smoothing processes, discontinuities and limitations in measurement resolution. Yet insolation forcing, a primary driver of multimillennial-scale climate change, acts through seasonal variations with direct impacts on seasonal climate1. Whether the sensitivity of seasonal climate to insolation matches theoretical predictions has not been assessed over long timescales. Here, we analyse a continuous record of water-isotope ratios from the West Antarctic Ice Sheet Divide ice core to reveal summer and winter temperature changes through the last 11,000 years. Summer temperatures in West Antarctica increased through the early-to-mid-Holocene, reached a peak 4,100 years ago and then decreased to the present. Climate model simulations show that these variations primarily reflect changes in maximum summer insolation, confirming the general connection between seasonal insolation and warming and demonstrating the importance of insolation intensity rather than seasonally integrated insolation or season duration2,3. Winter temperatures varied less overall, consistent with predictions from insolation forcing, but also fluctuated in the early Holocene, probably owing to changes in meridional heat transport. The magnitudes of summer and winter temperature changes constrain the lowering of the West Antarctic Ice Sheet surface since the early Holocene to less than 162 m and probably less than 58 m, consistent with geological constraints elsewhere in West Antarctica4-7.

2.
Am Nat ; 202(3): 302-321, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37606948

RESUMEN

AbstractFrom biofilms to whale pods, organisms across taxa live in groups, thereby accruing numerous diverse benefits of sociality. All social organisms, however, pay the inherent cost of increased resource competition. One expects that when resources become scarce, this cost will increase, causing group sizes to decrease. Indeed, this occurs in some species, but there are also species for which group sizes remain stable or even increase under scarcity. What accounts for these opposing responses? We present a conceptual framework, literature review, and theoretical model demonstrating that differing responses to sudden resource shifts can be explained by which sociality benefit exerts the strongest selection pressure on a particular species. We categorize resource-related benefits of sociality into six functionally distinct classes and model their effect on the survival of individuals foraging in groups under different resource conditions. We find that whether, and to what degree, the optimal group size (or correlates thereof) increases, decreases, or remains constant when resource abundance declines depends strongly on the dominant sociality mechanism. Existing data, although limited, support our model predictions. Overall, we show that across a wide diversity of taxa, differences in how group size shifts in response to resource declines can be driven by differences in the primary benefits of sociality.


Asunto(s)
Conducta Social
3.
Chaos ; 31(12): 123102, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34972318

RESUMEN

Scaling regions-intervals on a graph where the dependent variable depends linearly on the independent variable-abound in dynamical systems, notably in calculations of invariants like the correlation dimension or a Lyapunov exponent. In these applications, scaling regions are generally selected by hand, a process that is subjective and often challenging due to noise, algorithmic effects, and confirmation bias. In this paper, we propose an automated technique for extracting and characterizing such regions. Starting with a two-dimensional plot-e.g., the values of the correlation integral, calculated using the Grassberger-Procaccia algorithm over a range of scales-we create an ensemble of intervals by considering all possible combinations of end points, generating a distribution of slopes from least squares fits weighted by the length of the fitting line and the inverse square of the fit error. The mode of this distribution gives an estimate of the slope of the scaling region (if it exists). The end points of the intervals that correspond to the mode provide an estimate for the extent of that region. When there is no scaling region, the distributions will be wide and the resulting error estimates for the slope will be large. We demonstrate this method for computations of dimension and Lyapunov exponent for several dynamical systems and show that it can be useful in selecting values for the parameters in time-delay reconstructions.

4.
Chaos ; 30(6): 063143, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32611109

RESUMEN

We propose a curvature-based approach for choosing a good value for the time-delay parameter τ in delay reconstructions. The idea is based on the effects of the delay on the geometry of the reconstructions. If the delay is too small, the reconstructed dynamics are flattened along the main diagonal of the embedding space; too-large delays, on the other hand, can overfold the dynamics. Calculating the curvature of a two-dimensional delay reconstruction is an effective way to identify these extremes and to find a middle ground between them: both the sharp reversals at the extremes of an insufficiently unfolded reconstruction and the bends in an overfolded one create spikes in the curvature. We operationalize this observation by computing the mean Menger curvature of a trajectory segment on 2D reconstructions as a function of time delay. We show that the minimum of these values gives an effective heuristic for choosing the time delay. In addition, we show that this curvature-based heuristic is useful even in cases where the customary approach, which uses average mutual information, fails-e.g., noisy or filtered data.

5.
Chaos ; 29(10): 101105, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31675841

RESUMEN

Paleoclimate records are rich sources of information about the past history of the Earth system. Information theory provides a new means for studying these records. We demonstrate that weighted permutation entropy of water-isotope data from the West Antarctica Ice Sheet (WAIS) Divide ice core reveals meaningful climate signals in this record. We find that this measure correlates with accumulation (meters of ice equivalent per year) and may record the influence of geothermal heating effects in the deepest parts of the core. Dansgaard-Oeschger and Antarctic Isotope Maxima events, however, do not appear to leave strong signatures in the information record, suggesting that these abrupt warming events may actually be predictable features of the climate's dynamics. While the potential power of information theory in paleoclimatology is significant, the associated methods require well-dated and high-resolution data. The WAIS Divide core is the first paleoclimate record that can support this kind of analysis. As more high-resolution records become available, information theory could become a powerful forensic tool in paleoclimate science.

6.
Proc Biol Sci ; 285(1887)2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232162

RESUMEN

Animal social groups are complex systems that are likely to exhibit tipping points-which are defined as drastic shifts in the dynamics of systems that arise from small changes in environmental conditions-yet this concept has not been carefully applied to these systems. Here, we summarize the concepts behind tipping points and describe instances in which they are likely to occur in animal societies. We also offer ways in which the study of social tipping points can open up new lines of inquiry in behavioural ecology and generate novel questions, methods, and approaches in animal behaviour and other fields, including community and ecosystem ecology. While some behaviours of living systems are hard to predict, we argue that probing tipping points across animal societies and across tiers of biological organization-populations, communities, ecosystems-may help to reveal principles that transcend traditional disciplinary boundaries.


Asunto(s)
Conducta Animal , Conducta Social , Animales , Ecosistema
7.
Chaos ; 28(7): 075308, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30070518

RESUMEN

Understanding the mechanics behind the coordinated movement of mobile animal groups (collective motion) provides key insights into their biology and ecology, while also yielding algorithms for bio-inspired technologies and autonomous systems. It is becoming increasingly clear that many mobile animal groups are composed of heterogeneous individuals with differential levels and types of influence over group behaviors. The ability to infer this differential influence, or leadership, is critical to understanding group functioning in these collective animal systems. Due to the broad interpretation of leadership, many different measures and mathematical tools are used to describe and infer "leadership," e.g., position, causality, influence, and information flow. But a key question remains: which, if any, of these concepts actually describes leadership? We argue that instead of asserting a single definition or notion of leadership, the complex interaction rules and dynamics typical of a group imply that leadership itself is not merely a binary classification (leader or follower), but rather, a complex combination of many different components. In this paper, we develop an anatomy of leadership, identify several principal components, and provide a general mathematical framework for discussing leadership. With the intricacies of this taxonomy in mind, we present a set of leadership-oriented toy models that should be used as a proving ground for leadership inference methods going forward. We believe this multifaceted approach to leadership will enable a broader understanding of leadership and its inference from data in mobile animal groups and beyond.

8.
Entropy (Basel) ; 20(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33266655

RESUMEN

Permutation entropy techniques can be useful for identifying anomalies in paleoclimate data records, including noise, outliers, and post-processing issues. We demonstrate this using weighted and unweighted permutation entropy with water-isotope records containing data from a deep polar ice core. In one region of these isotope records, our previous calculations (See Garland et al. 2018) revealed an abrupt change in the complexity of the traces: specifically, in the amount of new information that appeared at every time step. We conjectured that this effect was due to noise introduced by an older laboratory instrument. In this paper, we validate that conjecture by reanalyzing a section of the ice core using a more advanced version of the laboratory instrument. The anomalous noise levels are absent from the permutation entropy traces of the new data. In other sections of the core, we show that permutation entropy techniques can be used to identify anomalies in the data that are not associated with climatic or glaciological processes, but rather effects occurring during field work, laboratory analysis, or data post-processing. These examples make it clear that permutation entropy is a useful forensic tool for identifying sections of data that require targeted reanalysis-and can even be useful for guiding that analysis.

9.
Chaos ; 25(12): 123108, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26723147

RESUMEN

Prediction models that capture and use the structure of state-space dynamics can be very effective. In practice, however, one rarely has access to full information about that structure, and accurate reconstruction of the dynamics from scalar time-series data-e.g., via delay-coordinate embedding-can be a real challenge. In this paper, we show that forecast models that employ incomplete reconstructions of the dynamics-i.e., models that are not necessarily true embeddings-can produce surprisingly accurate predictions of the state of a dynamical system. In particular, we demonstrate the effectiveness of a simple near-neighbor forecast technique that works with a two-dimensional time-delay reconstruction of both low- and high-dimensional dynamical systems. Even though correctness of the topology may not be guaranteed for incomplete reconstructions like this, the dynamical structure that they do capture allows for accurate predictions-in many cases, even more accurate than predictions generated using a traditional embedding. This could be very useful in the context of real-time forecasting, where the human effort required to produce a correct delay-coordinate embedding is prohibitive.

10.
Chaos ; 22(2): 023103, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22757510

RESUMEN

We investigate the use of iterated function system (IFS) models for data analysis. An IFS is a discrete-time dynamical system in which each time step corresponds to the application of one of the finite collection of maps. The maps, which represent distinct dynamical regimes, may be selected deterministically or stochastically. Given a time series from an IFS, our algorithm detects the sequence of regime switches under the assumption that each map is continuous. This method is tested on a simple example and an experimental computer performance data set. This methodology has a wide range of potential uses: from change-point detection in time-series data to the field of digital communications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA