RESUMEN
The process of cancer immunosurveillance is a mechanism of tumour suppression that can protect the host from cancer development throughout its lifetime1,2. However, it is unknown whether the effectiveness of cancer immunosurveillance fluctuates over a single day. Here we demonstrate that the initial time of day of tumour engraftment dictates the ensuing tumour size across mouse cancer models. Using immunodeficient mice as well as mice lacking lineage-specific circadian functions, we show that dendritic cells (DCs) and CD8+ T cells exert circadian anti-tumour functions that control melanoma volume. Specifically, we find that rhythmic trafficking of DCs to the tumour draining lymph node governs a circadian response of tumour-antigen-specific CD8+ T cells that is dependent on the circadian expression of the co-stimulatory molecule CD80. As a consequence, cancer immunotherapy is more effective when synchronized with DC functions, shows circadian outcomes in mice and suggests similar effects in humans. These data demonstrate that the circadian rhythms of anti-tumour immune components are not only critical for controlling tumour size but can also be of therapeutic relevance.
Asunto(s)
Linfocitos T CD8-positivos , Ritmo Circadiano , Células Dendríticas , Melanoma , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Inmunoterapia/métodos , Melanoma/inmunología , Melanoma/patología , Melanoma/terapia , Ratones Endogámicos C57BL , Antígeno B7-1 , Antígenos de Neoplasias/inmunología , Ganglios Linfáticos , Ritmo Circadiano/inmunologíaRESUMEN
Gut microbiota imbalance (dysbiosis) is increasingly associated with pathological conditions, both within and outside the gastrointestinal tract. Intestinal Paneth cells are considered to be guardians of the gut microbiota, but the events linking Paneth cell dysfunction with dysbiosis remain unclear. We report a three-step mechanism for dysbiosis initiation. Initial alterations in Paneth cells, as frequently observed in obese and inflammatorybowel diseases patients, cause a mild remodeling of microbiota, with amplification of succinate-producing species. SucnR1-dependent activation of epithelial tuft cells triggers a type 2 immune response that, in turn, aggravates the Paneth cell defaults, promoting dysbiosis and chronic inflammation. We thus reveal a function of tuft cells in promoting dysbiosis following Paneth cell deficiency and an unappreciated essential role of Paneth cells in maintaining a balanced microbiota to prevent inappropriate activation of tuft cells and deleterious dysbiosis. This succinate-tuft cell inflammation circuit may also contribute to the chronic dysbiosis observed in patients.
Asunto(s)
Disbiosis , Membrana Mucosa , Humanos , Inflamación , Células de Paneth , Succinatos , Ácido SuccínicoRESUMEN
The CNS has traditionally been considered an immune-privileged organ, but recent studies have identified a plethora of immune cells in the choroid plexus, meninges, perivascular spaces, and cribriform plate. Although those immune cells are crucial for the maintenance of CNS homeostasis and for neural protection against infections, they can lead to neuroinflammation in some circumstances. The blood and the lymphatic vasculatures exhibit distinct structural and molecular features depending on their location in the CNS, greatly influencing the compartmentalization and the nature of CNS immune responses. In this review, we discuss how endothelial cells regulate the migration and the functions of T cells in the CNS both at steady-state and in murine models of neuroinflammation, with a special focus on the anatomical, cellular, and molecular mechanisms implicated in EAE.
Asunto(s)
Sistema Nervioso Central , Encefalomielitis Autoinmune Experimental , Ratones , Animales , Células Endoteliales , Enfermedades Neuroinflamatorias , Linfocitos TRESUMEN
Together with inactivated influenza vaccines (IIV), live attenuated influenza vaccines (LAIV) are an important tool to prevent influenza A virus (IAV) illnesses in patients. LAIVs present the advantages to have a needle-free administration and to trigger a mucosal immune response. LAIV is approved for healthy 2- to 49-year old individuals. However, due to its replicative nature and higher rate of adverse events at-risk populations are excluded from the benefits of this vaccine. Using targeted mutagenesis, we modified the nonstructural protein 1 of the currently licensed LAIV in order to impair its ability to bind the host cellular protein CPSF30 and thus its ability to inhibit host mRNA poly-adenylation. We characterized our optimized LAIV (optiLAIV) in three different mouse models mimicking healthy and high-risk patients. Using a neonatal mouse model, we show faster clearance of our optimized vaccine compared to the licensed LAIV. Despite lower replication, optiLAIV equally protected mice against homosubtypic and hetesubtypic influenza strain challenges. We confirmed the safer profile of optiLAIV in Stat1-/- mice (highly susceptible to viral infections) by showing no signs of morbidity compared to a 50% mortality rate observed following LAIV inoculation. Using a human nasal 3D tissue model, we showed an increased induction of ER stress-related genes following immunization with optiLAIV. Induction of ER stress was previously shown to improve antigen-specific immune responses and is proposed as the mechanism of action of the licensed adjuvant AS03. This study characterizes a safer LAIV candidate in two mouse models mimicking infants and severely immunocompromised patients and proposes a simple attenuation strategy that could broaden LAIV application and reduce influenza burden in high-risk populations. IMPORTANCE Live attenuated influenza vaccine (LAIV) is a needle-free, mucosal vaccine approved for healthy 2- to 49-year old individuals. Its replicative nature and higher rate of adverse events excludes at-risk populations. We propose a strategy to improve LAIV safety and explore the possibility to expand its applications in children under 2-year old and immunocompromised patients. Using a neonatal mouse model, we show faster clearance of our optimized vaccine (optiLAIV) compared to the licensed LAIV. Despite lower replication, optiLAIV equally protected mice against influenza virus challenges. We confirmed the safer profile of optiLAIV in Stat1-/- mice (highly susceptible to viral infections) by showing no signs of morbidity compared to a 50% mortality rate from LAIV. OptiLAIV could expand the applications of the current LAIV and help mitigate the burden of IAV in susceptible populations.
Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Niño , Lactante , Humanos , Ratones , Animales , Preescolar , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anticuerpos Antivirales , Vacunas Atenuadas , Vacunas de Productos Inactivados , Virus de la Influenza A/genética , ARN MensajeroRESUMEN
Pyroptosis is a fulminant form of macrophage cell death, contributing to release of pro-inflammatory cytokines. In humans, it depends on caspase 1/4-activation of gasdermin D and is characterized by the release of cytoplasmic content. Pathogens apply strategies to avoid or antagonize this host response. We demonstrate here that a small accessory protein (PB1-F2) of contemporary H5N1 and H3N2 influenza A viruses (IAV) curtails fulminant cell death of infected human macrophages. Infection of macrophages with a PB1-F2-deficient mutant of a contemporary IAV resulted in higher levels of caspase-1 activation, cleavage of gasdermin D, and release of LDH and IL-1ß. Mechanistically, PB1-F2 limits transition of NLRP3 from its auto-repressed and closed confirmation into its active state. Consequently, interaction of a recently identified licensing kinase NEK7 with NLRP3 is diminished, which is required to initiate inflammasome assembly.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Humanos , Inflamasomas/genética , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza A/genética , Macrófagos , Quinasas Relacionadas con NIMA , Proteína con Dominio Pirina 3 de la Familia NLR/genética , PiroptosisRESUMEN
Helminth parasitic infections are a major global health and social burden. The host defence against helminths such as Nippostrongylus brasiliensis is orchestrated by type 2 cell-mediated immunity. Induction of type 2 cytokines, including interleukins (IL) IL-4 and IL-13, induce goblet cell hyperplasia with mucus production, ultimately resulting in worm expulsion. However, the mechanisms underlying the initiation of type 2 responses remain incompletely understood. Here we show that tuft cells, a rare epithelial cell type in the steady-state intestinal epithelium, are responsible for initiating type 2 responses to parasites by a cytokine-mediated cellular relay. Tuft cells have a Th2-related gene expression signature and we demonstrate that they undergo a rapid and extensive IL-4Rα-dependent amplification following infection with helminth parasites, owing to direct differentiation of epithelial crypt progenitor cells. We find that the Pou2f3 gene is essential for tuft cell specification. Pou2f3(-/-) mice lack intestinal tuft cells and have defective mucosal type 2 responses to helminth infection; goblet cell hyperplasia is abrogated and worm expulsion is compromised. Notably, IL-4Rα signalling is sufficient to induce expansion of the tuft cell lineage, and ectopic stimulation of this signalling cascade obviates the need for tuft cells in the epithelial cell remodelling of the intestine. Moreover, tuft cells secrete IL-25, thereby regulating type 2 immune responses. Our data reveal a novel function of intestinal epithelial tuft cells and demonstrate a cellular relay required for initiating mucosal type 2 immunity to helminth infection.
Asunto(s)
Inmunidad Mucosa/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Nippostrongylus/inmunología , Parásitos/inmunología , Animales , Linaje de la Célula , Proliferación Celular , Retroalimentación Fisiológica , Femenino , Células Caliciformes/citología , Células Caliciformes/inmunología , Interleucina-13/inmunología , Interleucina-17/inmunología , Interleucina-17/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Ratones , Factores de Transcripción de Octámeros/deficiencia , Receptores de Interleucina-4/inmunología , Transducción de Señal/inmunología , Células Madre/citología , Células Madre/inmunología , Infecciones por Strongylida/inmunología , Células Th2/citología , Células Th2/inmunologíaRESUMEN
Plasmacytoid dendritic cells (pDCs) are found in the CNS during neuroinflammation and have been reported to exert regulatory functions in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). However, the mechanisms of entry of pDCs into the CNS as well as their phenotype and innate functional properties, once recruited into the CNS, have not been thoroughly examined. Herein, we show that pDCs rapidly accumulate into the brain and spinal cord during the acute phase of EAE, and maintain the expression of numerous phenotypic markers typical of peripheral pDCs. Functionally, CNS-pDCs constitutively expressed IRF7 and were able to rapidly produce type I IFNs and IL-12p40 upon ex vivo TLR-9 stimulation. Using adoptive transfer experiments, we provide evidence that CNS-pDC are recruited from the blood and accumulate into the CNS during the acute phase of EAE. Accumulation of pDCs into the CNS was strongly inhibited in the absence of CD29, but not CD18, suggesting a major role for ß1 but not ß2 integrins. Indeed, blocking the CD49d α4-integrins during acute EAE drastically diminished CNS-pDC numbers. Together, our results demonstrate that circulating pDCs are actively recruited into the CNS during acute EAE through a mechanism largely dependent on CD49d/CD29-integrins.
Asunto(s)
Encéfalo/inmunología , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Integrina alfa4/inmunología , Integrina beta1/inmunología , Médula Espinal/inmunología , Traslado Adoptivo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Movimiento Celular/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/patología , Células Dendríticas/trasplante , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Regulación de la Expresión Génica , Inmunidad Innata , Integrina alfa4/genética , Integrina beta1/genética , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/inmunología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Subunidad p40 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/inmunología , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Toxina del Pertussis/administración & dosificación , Transducción de Señal , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunologíaRESUMEN
17ß-Estradiol (E2) suppresses the development of experimental autoimmune encephalomyelitis (EAE) through estrogen receptor (ER) α, yet the cellular targets remain elusive. We have used an adoptive transfer model of myelin oligodendrocyte glycoprotein-specific CD4+ T cells from 2D2 TCR transgenic mice. We show that in the recipient mice, ERα expression in bystander CD4+ T cells, rather than in cognate 2D2 T cells, is required for the inhibition of Th17 cell differentiation by E2. Coadministration of estrogen-primed WT, but not ERα-deficient CD4+ T cells, with naive 2D2 T cells lacking ERα inhibited the development of Th17 cell-mediated EAE. Suppression of Th17 cells and protection from EAE were maintained when ERα was deleted in Foxp3+ regulatory T cells. We showed that in vivo PD-L1 blockade alleviated the anti-inflammatory action of E2 and that PD-1 expression on cognate but not bystander T cells was required for the E2-dependent inhibition of Th17 differentiation. In cotransfer experiments, we found that only WT but not PD-1KO 2D2 T cells were amenable to E2-dependent inhibition of Th17 differentiation. These results support the conclusion that the restriction of Th17 cell development by E2-primed bystander CD4+ T cells requires cell-intrinsic PD-1 signaling within cognate T cells rather than induction of regulatory 2D2 T cells through PD-1 engagement. Altogether, our results indicate that pregnancy-level concentrations of estrogen signal in conventional Foxp3neg CD4+ T cells to limit the differentiation of cognate Th17 cells through a trans-acting mechanism of suppression that requires a functional PD-1/PD-L1 regulatory axis.
Asunto(s)
Efecto Espectador , Sistema Nervioso Central/inmunología , Estrógenos/metabolismo , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Traslado Adoptivo , Animales , Anticuerpos Monoclonales/administración & dosificación , Autoinmunidad , Antígeno B7-H1/inmunología , Antígenos CD4/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno/genética , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de SeñalRESUMEN
Stromal cells (SCs) are strategically positioned in both lymphoid and nonlymphoid organs to provide a scaffold and orchestrate immunity by modulating immune cell maturation, migration and activation. Recent characterizations of SCs have expanded our understanding of their heterogeneity and suggested a functional specialization of distinct SC subsets, further modulated by the microenvironment. Lymph node SCs (LNSCs) have been shown to be particularly important in maintaining immune homeostasis and T cell tolerance. Under inflammation situations, such as viral infections or tumor development, SCs undergo profound changes in their numbers and phenotype and play important roles in contributing to either the activation or the control of T cell immunity. In this review, we highlight the role of SCs located in LNs in shaping peripheral T cell responses in different immune contexts, such as autoimmunity, viral and cancer immunity.
Asunto(s)
Enfermedades Autoinmunes/patología , Ganglios Linfáticos/citología , Células del Estroma/inmunología , Linfocitos T/inmunología , Virosis/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Movimiento Celular , Homeostasis/inmunología , Humanos , Tolerancia Inmunológica , Ganglios Linfáticos/inmunología , Neoplasias/inmunología , Neoplasias/patología , Inmunología del Trasplante , Virosis/patologíaRESUMEN
CD4(+) T cells polarize into effector Th subsets characterized by signature transcription factors and cytokines. Although T-bet drives Th1 responses and represses the alternative Th2, Th17, and Foxp3(+) regulatory T cell fates, the role of the T-bet-related transcription factor eomesodermin (Eomes) in CD4(+) T cells is less well understood. In this study, we analyze the expression and effects of Eomes in mouse CD4(+) T lymphocytes. We find that Eomes is readily expressed in activated CD4(+) Th1 T cells in vivo. Eomes(+) CD4(+) T cells accumulated in old mice, under lymphopenic conditions in a T cell transfer model of colitis, and upon oral Ag administration. However, despite its expression, genetic deletion of Eomes in CD4(+) T cells did not impact on IFN-γ production nor increase Th2 or Th17 responses. In contrast, Eomes deficiency favored the accumulation of Foxp3(+) cells in old mice, after in vivo differentiation of Eomes-deficient naive CD4(+) T cells, and in response to oral Ag in a cell-intrinsic way. Enforced Eomes expression during in vitro regulatory T cell induction also reduced Foxp3 transcription. Likewise, bystander Eomes-deficient CD4(+) T cells were more efficient at protecting from experimental autoimmune encephalitis compared with wild-type CD4(+) T cells. This enhanced capacity of Eomes-deficient CD4(+) T cells to inhibit EAE in trans was associated with an enhanced frequency of Foxp3(+) cells. Our data identify a novel role for Eomes in CD4(+) T cells and indicate that Eomes expression may act by limiting Foxp3 induction, which may contribute to the association of EOMES to susceptibility to multiple sclerosis.
Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Factores de Transcripción Forkhead/biosíntesis , Proteínas de Dominio T Box/fisiología , Envejecimiento/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/inmunología , Modelos Animales de Enfermedad , Interferón gamma/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Dominio T Box/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Células Th2/inmunología , Células Th2/metabolismoRESUMEN
Tumor-associated lymphatic vessels promote metastasis and regulate antitumor immune responses. Here, we assessed the impact of cytotoxic T cells on the local lymphatic vasculature and concomitant tumor dissemination during an antitumor response. Interferon-γ (IFN-γ) released by effector T cells enhanced the expression of immunosuppressive markers by tumor-associated lymphatic endothelial cells (LECs). However, at higher effector T cell densities within the tumor, T cell-based immunotherapies induced LEC apoptosis and decreased tumor lymphatic vessel density. As a consequence, lymphatic flow was impaired, and lymph node metastasis was reduced. Mechanistically, T cell-mediated tumor cell death induced the release of tumor antigens and cross-presentation by tumor LECs, resulting in antigen-specific LEC killing by T cells. When LECs lacked the IFN-γ receptor expression, LEC killing was abrogated, indicating that IFN-γ is indispensable for reducing tumor-associated lymphatic vessel density and drainage. This study provides insight into how cytotoxic T cells modulate tumor lymphatic vessels and may help to improve immunotherapeutic protocols.
Asunto(s)
Células Endoteliales , Interferón gamma , Antígenos de Neoplasias , Reactividad Cruzada , Células Endoteliales/metabolismo , Humanos , Interferón gamma/metabolismo , Metástasis LinfáticaRESUMEN
Several solid malignancies trigger lymphangiogenesis, facilitating metastasis. Tumor-associated lymphatic vessels significantly contribute to the generation of an immunosuppressive tumor microenvironment (TME). Here, we have investigated the ability of tumoral lymphatic endothelial cells (LEC) to function as MHC class II-restricted antigen-presenting cells in the regulation of antitumor immunity. Using murine models of lymphangiogenic tumors engrafted under the skin, we have shown that tumoral LECs upregulate MHC class II and the MHC class II antigen-processing machinery, and that they promote regulatory T-cell (Treg) expansion ex vivo. In mice with LEC-restricted lack of MHC class II expression, tumor growth was severely impaired, whereas tumor-infiltrating effector T cells were increased. Reduction of tumor growth and reinvigoration of tumor-specific T-cell responses both resulted from alterations of the tumor-infiltrating Treg transcriptome and phenotype. Treg-suppressive functions were profoundly altered in tumors lacking MHC class II in LECs. No difference in effector T-cell responses or Treg phenotype and functions was observed in tumor-draining lymph nodes, indicating that MHC class II-restricted antigen presentation by LECs was required locally in the TME to confer potent suppressive functions to Tregs. Altogether, our study suggests that MHC class II-restricted antigen-presenting tumoral LECs function as a local brake, dampening T cell-mediated antitumor immunity and promoting intratumoral Treg-suppressive functions.
Asunto(s)
Células Endoteliales/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Escape del Tumor , Animales , Presentación de Antígeno , Comunicación Celular/inmunología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Femenino , Humanos , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Vasos Linfáticos/citología , Vasos Linfáticos/inmunología , Ratones , Cultivo Primario de Células , Células Tumorales Cultivadas , Microambiente Tumoral/inmunologíaRESUMEN
Colorectal cancer initiation and progression result from the accumulation of genetic and epigenetic alterations. Although aberrant gene expression and DNA methylation profiles are considered hallmarks of colorectal cancer development, the precise timing at which these are produced during tumor establishment remains elusive. Here we investigated the early transcriptional and epigenetic changes induced by adenomatous polyposis coli (Apc) inactivation in intestinal crypts. Hyperactivation of the Wnt pathway via Apc inactivation in crypt base columnar intestinal stem cells (ISC) led to their rapid accumulation driven by an impaired molecular commitment to differentiation, which was associated with discrete alterations in DNA methylation. Importantly, inhibiting the enzymes responsible for de novo DNA methylation restored the responsiveness of Apc-deficient intestinal organoids to stimuli regulating the proliferation-to-differentiation transition in ISC. This work reveals that early DNA methylation changes play critical roles in the establishment of the impaired fate decision program consecutive to Apc loss of function. SIGNIFICANCE: This study demonstrates the functional impact of changes in DNA methylation to determine the colorectal cancer cell phenotype following loss of Apc function.
Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Metilación de ADN , Intestino Delgado/citología , Intestino Delgado/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Células Madre/patología , Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Diferenciación Celular/fisiología , División Celular/fisiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Silenciador del Gen , Intestino Delgado/patología , Ratones , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/genética , Células Madre/metabolismo , Vía de Señalización WntRESUMEN
The lymphatic system comprises a network of lymphoid tissues and vessels that drains the extracellular compartment of most tissues. During tumor development, lymphatic endothelial cells (LECs) substantially expand in response to VEGFR-3 engagement by VEGF-C produced in the tumor microenvironment, a process known as tumor-associated lymphangiogenesis. Lymphatic drainage from the tumor to the draining lymph nodes consequently increases, powering interstitial flow in the tumor stroma. The ability of a tumor to induce and activate lymphatic growth has been positively correlated with metastasis. Much effort has been made to identify genes responsible for tumor-associated lymphangiogenesis. Inhibition of lymphangiogenesis with soluble VEGFR-3 or with specific monoclonal antibodies decreases tumor spread to LNs in rodent models. Importantly, tumor-associated lymphatics do not only operate as tumor cell transporters but also play critical roles in anti-tumor immunity. Therefore, metastatic as well as primary tumor progression can be affected by manipulating tumor-associated lymphatic remodeling or function. Here, we review and discuss our current knowledge on the contribution of LECs immersed in the tumor microenvironment as immunoregulators, as well as a possible functional remodeling of LECs subsets depending on the organ microenvironment.
Asunto(s)
Inmunomodulación/inmunología , Vasos Linfáticos/inmunología , Animales , Células Endoteliales/inmunología , Humanos , Linfangiogénesis/inmunología , Microambiente Tumoral/inmunologíaRESUMEN
Several clinical observations have shown that Bacillus Calmette-Guérin (BCG) vaccine has beneficial impact on patients suffering from different chronic inflammatory diseases. Here we evaluated whether BCG inactivated by Extended Freeze-Drying (EFD) which circumvents all the side effects linked to the live bacteria, could influence the development of experimental autoimmune encephalomyelitis (EAE), a mouse model for Multiple Sclerosis. EFD BCG strongly attenuates inflammation, both systemically and at the central nervous system (CNS) level, alleviating EAE. Mechanistically, EFD BCG directly impacts the phenotype of plasmacytoid dendritic cells (pDCs), and promotes their ability to induce suppressive IL-10 secreting regulatory T cells (Tregs) that inhibit encephalitogenic CD4+ T cells. When co-cultured with human allogenic naive CD4+ T cells, EFD BCG exposed human pDCs similarly induce the differentiation of IL-10 producing Tregs. Our study provides evidence that EFD BCG could be used as an immunomodulator of encephalitogenic T cells in multiple sclerosis patients.
Asunto(s)
Vacuna BCG/farmacología , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Linfocitos T Reguladores/inmunología , Animales , Vacuna BCG/química , Células Dendríticas/patología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Liofilización , Interleucina-10/inmunología , Ratones , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Linfocitos T Reguladores/patologíaRESUMEN
BACKGROUND: Endogenous opioids, including enkephalins, are fundamental regulators of pain. In inflammatory conditions, the local release of opioids by leukocytes at the inflammatory site inhibits nociceptor firing, thereby inducing analgesia. Accordingly, in chronic intestinal Th1/Th17-associated inflammation, enkephalins released by colitogenic CD4+ T lymphocytes relieve inflammation-induced visceral pain. The present study aims to investigate whether mucosal T-cell-derived enkephalins also exhibit a potent anti-inflammatory activity as described for exogenous opioid drugs in Th1/Th17-associated colitis. METHODS: The anti-inflammatory effects of endogenous opioids were investigated in both Th1/Th17-associated (transfer of CD4+CD45RBhigh T lymphocytes) and Th2-associated (oxazolone) colitis models in mice. Inflammation-induced colonic damage and CD4+ T cell subsets were compared in mice treated or not treated with naloxone methiodide, a peripheral antagonist of opioid receptors. The anti-inflammatory activity of T-cell-derived enkephalins was further estimated by comparison of colitis severity in immunodeficient mice into which naïve CD4+CD45RBhigh T lymphocytes originating from wild-type or enkephalin-knockout mice had been transferred. RESULTS: Peripheral opioid receptor blockade increases the severity of Th1/Th17-induced colitis and attenuates Th2 oxazolone colitis. The opposite effects of naloxone methiodide treatment in these two models of intestinal inflammation are dependent on the potency of endogenous opioids to promote a Th2-type immune response. Accordingly, the transfer of enkephalin-deficient CD4+CD45RBhigh T lymphocytes into immunodeficient mice exacerbates inflammation-induced colonic injury. CONCLUSIONS: Endogenous opioids, including T-cell-derived enkephalins, promote a Th2-type immune response, which, depending on the context, may either attenuate (Th1/Th17-associated) or aggravate (Th2-associated) intestinal inflammation.
Asunto(s)
Colitis/inmunología , Encefalinas/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Linfocitos T CD4-Positivos/trasplante , Colitis/tratamiento farmacológico , Inmunidad Mucosa , Transfusión de Linfocitos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Naloxona/uso terapéutico , Subgrupos de Linfocitos T/inmunología , Dolor Visceral/inmunologíaRESUMEN
A growing body of evidence from basic and clinical studies supports the therapeutic potential of estrogens in multiple sclerosis (MS), originating from the well-established reduction in relapse rates observed among women with MS during pregnancy. The biological effects of estrogens are mediated by estrogen receptors (ERα and ERß). Estrogens or selective ER-agonists have been shown to exert potent neuroprotective or anti-inflammatory effects in experimental autoimmune encephalomyelitis (EAE), the mouse model of MS. A central question in EAE is to identify the cellular targets that express a functional ER isotype, and the mechanisms underlying the neuroprotective and anti-inflammatory effects of estrogens. Using pharmacological approaches targeting ER-specific functions, and genetic tools such as conditional knockout mice in which ERα or ERß are selectively deleted in specific cell populations, a clearer picture is now emerging of the various cellular targets and downstream molecules responsible for estrogen-mediated protection against central nervous system autoimmunity.