Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673831

RESUMEN

Designed ankyrin repeat protein (DARPin) G3 is an engineered scaffold protein. This small (14.5 kDa) targeting protein binds with high affinity to human epidermal growth factor receptor 2 (HER2). HER2 is overexpressed in several cancers. The use of the DARPin G3 for radionuclide therapy is complicated by its high renal reabsorption after clearance via the glomeruli. We tested the hypothesis that a fusion of the DARPin G3 with an albumin-binding domain (ABD) would prevent rapid renal excretion and high renal reabsorption resulting in better tumour targeting. Two fusion proteins were produced, one with the ABD at the C-terminus (G3-ABD) and another at the N-terminus (ABD-G3). Both variants were labelled with 177Lu. The binding properties of the novel constructs were evaluated in vitro and their biodistribution was compared in mice with implanted human HER2-expressing tumours. Fusion with the ABD increased the retention time of both constructs in blood compared with the non-ABD-fused control. The effect of fusion with the ABD depended strongly on the order of the domains in the constructs, resulting in appreciably better targeting properties of [177Lu]Lu-G3-ABD. Our data suggest that the order of domains is critical for the design of targeting constructs based on scaffold proteins.


Asunto(s)
Receptor ErbB-2 , Animales , Femenino , Humanos , Ratones , Albúminas/metabolismo , Repetición de Anquirina , Línea Celular Tumoral , Lutecio , Unión Proteica , Dominios Proteicos , Radioisótopos , Radiofármacos/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Distribución Tisular , Terapia Molecular Dirigida
2.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362226

RESUMEN

Non-invasive radionuclide imaging of human epidermal growth factor receptor type 2 (HER2) expression in breast, gastroesophageal, and ovarian cancers may stratify patients for treatment using HER2-targeted therapeutics. Designed ankyrin repeat proteins (DARPins) are a promising type of targeting probe for radionuclide imaging. In clinical studies, the DARPin [99mTc]Tc-(HE)3-G3 labeled using a peptide-based chelator His-Glu-His-Glu-His-Glu ((HE)3), provided clear imaging of HER2 expressing breast cancer 2-4 h after injection. The goal of this study was to evaluate if the use of cysteine-containing peptide-based chelators Glu-Glu-Glu-Cys (E3C), Gly-Gly-Gly-Cys (G3C), and Gly-Gly-Gly-Ser-Cys connected via a (Gly-Gly-Gly-Ser)3-linker (designated as G3-(G3S)3C) would further improve the contrast of imaging using 99mTc-labeled derivatives of G3. The labeling of the new variants of G3 provided a radiochemical yield of over 95%. Labeled G3 variants bound specifically to human HER2-expressing cancer cell lines with affinities in the range of 1.9-5 nM. Biodistribution of [99mTc]Tc-G3-G3C, [99mTc]Tc-G3-(G3S)3C, and [99mTc]Tc-G3-E3C in mice was compared with the biodistribution of [99mTc]Tc-(HE)3-G3. It was found that the novel variants provide specific accumulation in HER2-expressing human xenografts and enable discrimination between tumors with high and low HER2 expression. However, [99mTc]Tc-(HE)3-G3 provided better contrast between tumors and the most frequent metastatic sites of HER2-expressing cancers and is therefore more suitable for clinical applications.


Asunto(s)
Neoplasias de la Mama , Proteínas de Repetición de Anquirina Diseñadas , Femenino , Humanos , Animales , Ratones , Quelantes , Distribución Tisular , Línea Celular Tumoral , Cintigrafía , Péptidos , Neoplasias de la Mama/diagnóstico por imagen
3.
Int J Mol Sci ; 21(9)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392820

RESUMEN

Epithelial cell adhesion molecule (EpCAM) is overexpressed in 55%-75% of ovarian carcinomas (OC). EpCAM might be used as a target for a treatment of disseminated OC. Designed ankyrin repeats protein (DARPin) Ec1 is a small (18 kDa) protein, which binds to EpCAM with subnanomolar affinity. We tested a hypothesis that Ec1 labeled with a non-residualizing label might serve as a companion imaging diagnostic for stratification of patients for EpCAM-targeting therapy. Ec1 was labeled with 125I using N-succinimidyl-para-iodobenzoate. Binding affinity, specificity, and cellular processing of [125I]I-PIB-Ec1 were evaluated using SKOV-3 and OVCAR-3 ovarian carcinoma cell lines. Biodistribution and tumor-targeting properties of [125I]I-PIB-Ec1 were studied in Balb/c nu/nu mice bearing SKOV-3 and OVCAR-3 xenografts. EpCAM-negative Ramos lymphoma xenografts served as specificity control. Binding of [125I]I-PIB-Ec1 to ovarian carcinoma cell lines was highly specific and had affinity in picomolar range. Slow internalization of [125I]I-PIB-Ec1 by OC cells confirmed utility of non-residualizing label for in vivo imaging. [125I]I-PIB-Ec1 provided 6 h after injection tumor-to-blood ratios of 30 ± 11 and 48 ± 12 for OVCAR-3 and SKOV-3 xenografts, respectively, and high contrast to other organs. Tumor targeting was highly specific. Saturation of tumor uptake at a high dose of Ec1 in SKOV-3 model provided a rationale for dose selection in further studies using therapeutic conjugates of Ec1 for targeted therapy. In conclusion, [125I]I-PIB-Ec1 is a promising agent for visualizing EpCAM expression in OC.


Asunto(s)
Molécula de Adhesión Celular Epitelial/metabolismo , Radioisótopos de Yodo/química , Imagen Molecular/métodos , Neoplasias Ováricas/diagnóstico por imagen , Proteínas Recombinantes de Fusión/administración & dosificación , Animales , Línea Celular Tumoral , Estudios de Factibilidad , Femenino , Humanos , Ratones , Ratones Desnudos , Terapia Molecular Dirigida , Trasplante de Neoplasias , Neoplasias Ováricas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacocinética , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Distribución Tisular
4.
Molecules ; 25(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526905

RESUMEN

Affibody molecules are the most studied class of engineered scaffold proteins (ESPs) in radionuclide molecular imaging. Attempts to use affibody molecules directly labelled with radiometals for targeted radionuclide therapy were hampered by the high uptake and retention of radioactivity in kidneys. Several promising strategies have been implemented to circumvent this problem. Here, we investigated whether a pharmacological approach targeting different components of the reabsorption system could be used to lower the uptake of [99mTc]Tc-ZHER:2395 affibody molecule in kidneys. Pre-injection of probenecid, furosemide, mannitol or colchicine had no influence on activity uptake in kidneys compared to the control group. Mice pre-injected with maleate and fructose had 33% and 51% reduction in the kidney-associated activity, respectively, compared to the control group. Autoradiography images showed that the accumulation of activity after [99mTc]Tc-ZHER2:2395 injection was in the renal cortex and that both maleate and fructose could significantly reduce it. Results from this study demonstrate that pharmacological intervention with maleate and fructose was effective in reducing the kidney uptake of affibody molecules. A presumable mechanism is the disruption of ATP-mediated cellular uptake and endocytosis processes of affibody molecules by tubular cells.


Asunto(s)
Quelantes/química , Fructosa/farmacología , Riñón/metabolismo , Maleatos/farmacología , Compuestos de Organotecnecio/farmacocinética , Radiofármacos/farmacocinética , Proteínas Recombinantes de Fusión/farmacocinética , Animales , Inhibidores Enzimáticos/farmacología , Femenino , Riñón/diagnóstico por imagen , Riñón/efectos de los fármacos , Ratones , Imagen Molecular , Compuestos de Organotecnecio/química , Cintigrafía , Radiofármacos/química , Proteínas Recombinantes de Fusión/química , Edulcorantes/farmacología , Distribución Tisular
5.
Molecules ; 25(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998229

RESUMEN

Albumin binding domain-Derived Affinity ProTeins (ADAPTs) are small (5 kDa) engineered scaffold proteins that are promising targeting agents for radionuclide-based imaging. A recent clinical study has demonstrated that radiolabeled ADAPTs can efficiently visualize human epidermal growth factor receptor 2 (HER2) expression in breast cancer using SPECT imaging. However, the use of ADAPTs directly labeled with radiometals for targeted radionuclide therapy is limited by their high reabsorption and prolonged retention of activity in kidneys. In this study, we investigated whether a co-injection of lysine or gelofusin, commonly used for reduction of renal uptake of radiolabeled peptides in clinics, would reduce the renal uptake of [99mTc]Tc(CO)3-ADAPT6 in NMRI mice. In order to better understand the mechanism behind the reabsorption of [99mTc]Tc(CO)3-ADAPT6, we included several compounds that act on various parts of the reabsorption system in kidneys. Administration of gelofusine, lysine, probenecid, furosemide, mannitol, or colchicine did not change the uptake of [99mTc]Tc(CO)3-ADAPT6 in kidneys. Sodium maleate reduced the uptake of [99mTc]Tc(CO)3-ADAPT6 to ca. 25% of the uptake in the control, a high dose of fructose (50 mmol/kg) reduced the uptake by ca. two-fold. However, a lower dose (20 mmol/kg) had no effect. These results indicate that common clinical strategies are not effective for reduction of kidney uptake of [99mTc]Tc(CO)3-ADAPT6 and that other strategies for reduction of activity uptake or retention in kidneys should be investigated for ADAPT6.


Asunto(s)
Riñón/metabolismo , Proteínas/farmacología , Radiofármacos/farmacología , Animales , Autorradiografía , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Femenino , Ratones , Proteínas/administración & dosificación , Proteínas/metabolismo , Radiofármacos/administración & dosificación , Distribución Tisular/efectos de los fármacos
6.
Molecules ; 25(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066684

RESUMEN

Efficient treatment of disseminated triple-negative breast cancer (TNBC) remains an unmet clinical need. The epithelial cell adhesion molecule (EpCAM) is often overexpressed on the surface of TNBC cells, which makes EpCAM a potential therapeutic target. Radionuclide molecular imaging of EpCAM expression might permit selection of patients for EpCAM-targeting therapies. In this study, we evaluated a scaffold protein, designed ankyrin repeat protein (DARPin) Ec1, for imaging of EpCAM in TNBC. DARPin Ec1 was labeled with a non-residualizing [125I]I-para-iodobenzoate (PIB) label and a residualizing [99mTc]Tc(CO)3 label. Both imaging probes retained high binding specificity and affinity to EpCAM-expressing MDA-MB-468 TNBC cells after labeling. Internalization studies showed that Ec1 was retained on the surface of MDA-MB-468 cells to a high degree up to 24 h. Biodistribution in Balb/c nu/nu mice bearing MDA-MB-468 xenografts demonstrated specific uptake of both [125I]I-PIB-Ec1 and [99mTc]Tc(CO)3-Ec1 in TNBC tumors. [125I]I-PIB-Ec1 had appreciably lower uptake in normal organs compared with [99mTc]Tc(CO)3-Ec1, which resulted in significantly (p < 0.05) higher tumor-to-organ ratios. The biodistribution data were confirmed by micro-Single-Photon Emission Computed Tomography/Computed Tomography (microSPECT/CT) imaging. In conclusion, an indirectly radioiodinated Ec1 is the preferable probe for imaging of EpCAM in TNBC.


Asunto(s)
Molécula de Adhesión Celular Epitelial/análisis , Imagen Molecular/métodos , Sondas Moleculares/química , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Molécula de Adhesión Celular Epitelial/metabolismo , Femenino , Humanos , Radioisótopos de Yodo/química , Radioisótopos de Yodo/farmacocinética , Yodobenzoatos/química , Ratones Endogámicos BALB C , Sondas Moleculares/farmacocinética , Proteínas Musculares/química , Proteínas Nucleares/química , Radiofármacos/química , Radiofármacos/farmacocinética , Tecnecio , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Pharm ; 16(3): 995-1008, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30608701

RESUMEN

Designed ankyrin repeat proteins (DARPins) are small engineered scaffold proteins that can be selected for binding to desirable molecular targets. High affinity and small size of DARPins render them promising probes for radionuclide molecular imaging. However, detailed knowledge on many factors influencing their imaging properties is still lacking. We have evaluated two human epidermal growth factor 2 (HER2)-specific DARPins with different size and binding properties. DARPins 9_29-H6 and G3-H6 were radiolabeled with iodine-125 and tricarbonyl technetium-99m and evaluated in vitro. A side-by-side comparison of biodistribution and tumor targeting was performed. HER2-specific tumor accumulation of G3-H6 was demonstrated. A combination of smaller size and higher affinity resulted in a higher tumor uptake of G3-H6 in comparison to 9_29-H6. Technetium-99m labeled G3-H6 demonstrated a better biodistribution profile than 9_29-H6, with several-fold lower uptake in liver. Radioiodinated G3-H6 showed the best tumor-to-organ ratios. The combined effect of affinity, molecular weight, scaffold composition, and nonresidualizing properties of iodine label provided radioiodinated G3-H6 with high clinical potential for imaging of HER2.


Asunto(s)
Repetición de Anquirina , Ancirinas/clasificación , Ancirinas/farmacocinética , Radioisótopos de Yodo/farmacocinética , Neoplasias/diagnóstico por imagen , Receptor ErbB-2/metabolismo , Tecnecio/farmacocinética , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Molecular , Neoplasias/patología , Unión Proteica , Cintigrafía , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Amino Acids ; 50(8): 981-994, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29728916

RESUMEN

Epidermal growth factor receptor (EGFR) is overexpressed in a number of cancers and is the molecular target for several anti-cancer therapeutics. Radionuclide molecular imaging of EGFR expression should enable personalization of anti-cancer treatment. Affibody molecule is a promising type of high-affinity imaging probes based on a non-immunoglobulin scaffold. A series of derivatives of the anti-EGFR affibody molecule ZEGFR:2377, having peptide-based cysteine-containing chelators for conjugation of 99mTc, was designed and evaluated. It was found that glutamate-containing chelators Gly-Gly-Glu-Cys (GGEC), Gly-Glu-Glu-Cys (GEEC) and Glu-Glu-Glu-Cys (EEEC) provide the best labeling stability. The glutamate containing conjugates bound to EGFR-expressing cells specifically and with high affinity. Specific targeting of EGFR-expressing xenografts in mice was demonstrated. The number of glutamate residues in the chelator had strong influence on biodistribution of radiolabeled affibody molecules. Increase of glutamate content was associated with lower uptake in normal tissues. The 99mTc-labeled variant containing the EEEC chelator provided the highest tumor-to-organ ratios. In conclusion, optimizing the composition of peptide-based chelators enhances contrast of imaging of EGFR-expression using affibody molecules.


Asunto(s)
Imagen Molecular , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Animales , Línea Celular Tumoral , Quelantes , Cisteína , Receptores ErbB/análisis , Receptores ErbB/biosíntesis , Receptores ErbB/química , Humanos , Ratones , Imagen Molecular/métodos , Trasplante de Neoplasias , Neoplasias/metabolismo , Péptidos , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/química , Tecnecio , Distribución Tisular
9.
Mol Pharm ; 15(7): 2674-2683, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29865791

RESUMEN

Radionuclide molecular imaging is a promising tool for visualization of cancer associated molecular abnormalities in vivo and stratification of patients for specific therapies. ADAPT is a new type of small engineered proteins based on the scaffold of an albumin binding domain of protein G. ADAPTs have been utilized to select and develop high affinity binders to different proteinaceous targets. ADAPT6 binds to human epidermal growth factor 2 (HER2) with low nanomolar affinity and can be used for its in vivo visualization. Molecular design of 111In-labeled anti-HER2 ADAPT has been optimized in several earlier studies. In this study, we made a direct comparison of two of the most promising variants, having either a DEAVDANS or a (HE)3DANS sequence at the N-terminus, conjugated with a maleimido derivative of DOTA to a GSSC amino acids sequence at the C-terminus. The variants (designated DOTA-C59-DEAVDANS-ADAPT6-GSSC and DOTA-C61-(HE)3DANS-ADAPT6-GSSC) were stably labeled with 111In for SPECT and 68Ga for PET. Biodistribution of labeled ADAPT variants was evaluated in nude mice bearing human tumor xenografts with different levels of HER2 expression. Both variants enabled clear discrimination between tumors with high and low levels of HER2 expression. 111In-labeled ADAPT6 derivatives provided higher tumor-to-organ ratios compared to 68Ga-labeled counterparts. The best performing variant was DOTA-C61-(HE)3DANS-ADAPT6-GSSC, which provided tumor-to-blood ratios of 208 ± 36 and 109 ± 17 at 3 h for 111In and 68Ga labels, respectively.


Asunto(s)
Proteínas Bacterianas/química , Diseño de Fármacos , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen , Receptor ErbB-2/metabolismo , Animales , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular Tumoral , Femenino , Radioisótopos de Galio/administración & dosificación , Radioisótopos de Galio/química , Radioisótopos de Galio/metabolismo , Humanos , Radioisótopos de Indio/administración & dosificación , Radioisótopos de Indio/química , Radioisótopos de Indio/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/patología , Ingeniería de Proteínas , Cintigrafía/métodos , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Mol Pharm ; 15(1): 175-185, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29160082

RESUMEN

Zirconium-89 is an emerging radionuclide for positron emission tomography (PET) especially for biomolecules with slow pharmacokinetics as due to its longer half-life, in comparison to fluorine-18 and gallium-68, imaging at late time points is feasible. Desferrioxamine B (DFO), a linear bifunctional chelator (BFC) is mostly used for this radionuclide so far but shows limitations regarding stability. Our group recently reported on fusarinine C (FSC) with similar zirconium-89 complexing properties but potentially higher stability related to its cyclic structure. This study was designed to compare FSC and DFO head-to-head as bifunctional chelators for 89Zr-radiolabeled EGFR-targeting ZEGFR:2377 affibody bioconjugates. FSC-ZEGFR: 2377 and DFO-ZEGFR:2377 were evaluated regarding radiolabeling, in vitro stability, specificity, cell uptake, receptor affinity, biodistribution, and microPET-CT imaging. Both conjugates were efficiently labeled with zirconium-89 at room temperature but radiochemical yields increased substantially at elevated temperature, 85 °C. Both 89Zr-FSC-ZEGFR:2377 and 89Zr-DFO-ZEGFR:2377 revealed remarkable specificity, affinity and slow cell-line dependent internalization. Radiolabeling at 85 °C showed comparable results in A431 tumor xenografted mice with minor differences regarding blood clearance, tumor and liver uptake. In comparison 89Zr-DFO-ZEGFR:2377, radiolabeled at room temperature, showed a significant difference regarding tumor-to-organ ratios. MicroPET-CT imaging studies of 89Zr-FSC-ZEGFR:2377 as well as 89Zr-DFO-ZEGFR:2377 confirmed these findings. In summary we were able to show that FSC is a suitable alternative to DFO for radiolabeling of biomolecules with zirconium-89. Furthermore, our findings indicate that 89Zr-radiolabeling of DFO conjugates at higher temperature reduces off-chelate binding leading to significantly improved tumor-to-organ ratios and therefore enhancing image contrast.


Asunto(s)
Quelantes/química , Receptores ErbB/química , Radioisótopos/química , Circonio/química , Animales , Autorradiografía , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Deferoxamina/química , Electroforesis en Gel de Poliacrilamida , Femenino , Compuestos Férricos/química , Humanos , Ácidos Hidroxámicos/química , Ratones , Ratones Endogámicos BALB C , Tomografía de Emisión de Positrones/métodos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Bioconjug Chem ; 27(3): 716-26, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26781756

RESUMEN

Engineered scaffold proteins (ESP) are high-affinity binders that can be used as probes for radionuclide imaging. Histidine-containing tags enable both efficient purification of ESP and radiolabeling with (99m)Tc(CO)3. Earlier studies demonstrated that the use of a histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag instead of the commonly used hexahistidine (H6)-tag reduces hepatic uptake of radiolabeled ESP and short peptides. Here, we investigated the influence of histidine-containing tags on the biodistribution of a novel type of ESP, ADAPTs. A series of anti-HER2 ADAPT probes having H6- or (HE)3-tags in the N-termini were prepared. The constructs, (HE)3-ADAPT6 and H6-ADAPT6, were labeled with two different nuclides, (99m)Tc or (111)In. The labeling with (99m)Tc(CO)3 utilized the histidine-containing tags, while (111)In was attached through a maleimido derivative of DOTA conjugated to the N-terminus. For (111)In-labeled ADAPTs, the use of (HE)3 provided a significantly (p < 0.05) lower hepatic uptake at 1 h after injection, but there was no significant difference in hepatic uptake of (111)In-(HE)3-ADAPT6 and H6-ADAPT6 at later time points. Interestingly, in the case of (99m)Tc, (99m)Tc(CO)3-H6-ADAPT6 provided significantly (p < 0.05) lower uptake in a number of normal tissues and was more suitable as an imaging probe. Thus, the influence of histidine-containing tags on the biodistribution of the novel ADAPT scaffold proteins was different compared to its influence on other ESPs studied so far. Apparently, the effect of a histidine-containing tag on the biodistribution is highly dependent on the scaffold composition of the ESP.


Asunto(s)
Histidina/química , Proteínas/química , Secuencia de Aminoácidos , Distribución Tisular
12.
Bioconjug Chem ; 27(11): 2678-2688, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27740752

RESUMEN

Radionuclide-imaging-based stratification of patients to targeted therapies makes cancer treatment more personalized and therefore more efficient. Albumin-binding domain derived affinity proteins (ADAPTs) constitute a novel group of imaging probes based on the scaffold of an albumin-binding domain (ABD). To evaluate how different compositions of the N-terminal sequence of ADAPTs influence their biodistribution, a series of human epidermal growth factor receptor type 2 (HER2)-binding ADAPT6 derivatives with different N-terminal sequences were created: GCH6DANS (2), GC(HE)3DANS (3), GCDEAVDANS (4), and GCVDANS(5). These were compared with the parental variant: GCSS(HE)3DEAVDANS (1). All variants were site-specifically conjugated with a maleimido-derivative of a DOTA chelator and labeled with 111In. Binding to HER2-expressing cells in vitro, in vivo biodistribution as well as targeting properties of the new variants were compared with properties of the 111In-labeled parental ADAPT variant 1 (111In-DOTA-1). The composition of the N-terminal sequence had an apparent influence on biodistribution of ADAPT6 in mice. The use of a hexahistidine tag in 111In-DOTA-2 was associated with elevated hepatic uptake compared to the (HE)3-containing counterpart, 111In-DOTA-3. All new variants without a hexahistidine tag demonstrated lower uptake in blood, lung, spleen, and muscle compared to uptake in the parental variant. The best new variants, 111In-DOTA-3 and 111In-DOTA-5, provided tumor uptakes of 14.6 ± 2.4 and 12.5 ± 1.3% ID/g at 4 h after injection, respectively. The tumor uptake of 111In-DOTA-3 was significantly higher than the uptake of the parental 111In-DOTA-1 (9.1 ± 2.0% ID/g). The tumor-to-blood ratios of 395 ± 75 and 419 ± 91 at 4 h after injection were obtained for 111In-DOTA-5 and 111In-DOTA-3, respectively. In conclusion, the N-terminal sequence composition affects the biodistribution and targeting properties of ADAPT-based imaging probes, and its optimization may improve imaging contrast.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Radioisótopos de Indio , Receptor ErbB-2/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacocinética , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Marcaje Isotópico , Ratones , Imagen Molecular , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Ingeniería de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , Temperatura , Distribución Tisular
13.
Mol Pharm ; 13(11): 3676-3687, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27529191

RESUMEN

Overexpression of the enzyme carbonic anhydrase IX (CAIX) is documented for chronically hypoxic malignant tumors as well as for normoxic renal cell carcinoma. Radionuclide molecular imaging of CAIX would be useful for detection of hypoxic areas in malignant tumors, for patients' stratification for CAIX-targeted therapies, and for discrimination of primary malignant and benign renal tumors. Earlier, we have reported feasibility of in vivo radionuclide based imaging of CAIX expressing tumors using Affibody molecules, small affinity proteins based on a nonimmunoglobulin scaffold. In this study, we compared imaging properties of several anti-CAIX Affibody molecules having identical scaffold parts and competing for the same epitope on CAIX, but having different binding paratopes. Four variants were labeled using residualizing 99mTc and nonresidualizing 125I labels. All radiolabeled variants demonstrated high-affinity detection of CAIX-expressing cell line SK-RC-52 in vitro and specific accumulation in SK-RC-52 xenografts in vivo. 125I-labeled conjugates demonstrated much lower radioactivity uptake in kidneys but higher radioactivity concentration in blood compared with 99mTc-labeled counterparts. Although all variants cleared rapidly from blood and nonspecific compartments, there was noticeable difference in their biodistribution. The best variant for imaging of expression of CAIX in disseminated cancer was 99mTc-(HE)3-ZCAIX:2 providing tumor uptake of 16.3 ± 0.9% ID/g and tumor-to-blood ratio of 44 ± 7 at 4 h after injection. For primary renal cell carcinoma, the most promising imaging candidate was 125I-ZCAIX:4 providing tumor-kidney ratio of 2.1 ± 0.5. In conclusion, several clones of scaffold proteins should be evaluated to select the best variant for development of an imaging probe with optimal sensitivity for the intended application.


Asunto(s)
Anhidrasa Carbónica IX/metabolismo , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/metabolismo , Animales , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos BALB C , Radiofármacos/análisis
14.
Mol Med Rep ; 29(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38186305

RESUMEN

The feasibility of targeted imaging and therapy using radiolabeled albumin­binding domain­derived affinity proteins (ADAPTs) has been demonstrated. However, high renal uptake of radioactivity limits the maximum tolerated dose. Successful reduction of renal retention of radiolabeled Fab fragments has been demonstrated by incorporating a cleavable linker between the targeting agent and the radiometal chelator. The present study investigated if the introduction of a glycine­leucine­glycine­lysine (GLGK)­linker would reduce the kidney uptake of radiolabeled ADAPT6 and also compared it with the non­residualizing [125I]I­[(4­hydroxyphenyl)ethyl]maleimide ([125I]I­HPEM) labeling strategy. GLGK was site­specifically coupled to human epidermal growth factor receptor 2 (HER2)­targeting ADAPT6. Conjugates without the cleavable linker were used as controls and all constructs were labeled with lutetium­177 (177Lu). [125I]I­HPEM was coupled to ADAPT6 at the C­terminus. Biodistribution of all constructs was evaluated in NMRI mice 4 h after injection. Specific binding to HER2­expressing cells in vitro was demonstrated for all constructs. No significant difference in kidney uptake was observed between the [177Lu]Lu­2,2',2",2"'­(1,4,7,10­tetraazacyclododecane­1,4,7,10­tetrayl)tetraacetic acid­GLGK­conjugates and the controls. The renal activity of [125I]I­HPEM­ADAPT6 was significantly lower compared with all other constructs. In conclusion, the incorporation of the cleavable GLGK­linker did not result in lower renal retention. Therefore, the present study emphasized that, in order to achieve a reduction of renal retention, alternative molecular design strategies may be required for different targeting agents.


Asunto(s)
Proteínas Portadoras , Fabaceae , Humanos , Animales , Ratones , Glicina , Leucina , Lisina , Distribución Tisular , Albúminas
15.
J Control Release ; 366: 621-636, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215986

RESUMEN

Semaglutide is the first oral glucagon-like peptide-1 (GLP-1) analog commercially available for the treatment of type 2 diabetes. In this work, semaglutide was incorporated into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (NPs) to improve its delivery across the intestinal barrier. The nanocarriers were surface-decorated with either a peptide or an affibody that target the human neonatal Fc receptor (hFcRn), located on the luminal cell surface of the enterocytes. Both ligands were successfully conjugated with the PLGA-PEG via maleimide-thiol chemistry and thereafter, the functionalized polymers were used to produce semaglutide-loaded NPs. Monodisperse NPs with an average size of 170 nm, neutral surface charge and 3% of semaglutide loading were obtained. Both FcRn-targeted NPs exhibited improved interaction and association with Caco-2 cells (cells that endogenously express the hFcRn), compared to non-targeted NPs. Additionally, the uptake of FcRn-targeted NPs was also observed to occur in human intestinal organoids (HIOs) expressing hFcRn through microinjection into the lumen of HIOs, resulting in potential increase of semaglutide permeability for both ligand-functionalized nanocarriers. Herein, our study demonstrates valuable data and insights that the FcRn-targeted NPs has the capacity to promote intestinal absorption of therapeutic peptides.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptidos Similares al Glucagón , Lactatos , Nanopartículas , Polietilenglicoles , Recién Nacido , Humanos , Células CACO-2 , Péptidos , Receptores Fc
16.
Pharmaceutics ; 14(8)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36015242

RESUMEN

Overexpression of the human epidermal growth factor receptor 2 (HER2) in breast and gastric cancer is exploited for targeted therapy using monoclonal antibodies and antibody-drug conjugates. Small engineered scaffold proteins, such as the albumin binding domain (ABD) derived affinity proteins (ADAPTs), are a promising new format of targeting probes for development of drug conjugates with well-defined structure and tunable pharmacokinetics. Radiolabeled ADAPT6 has shown excellent tumor-targeting properties in clinical trials. Recently, we developed a drug conjugate based on the HER2-targeting ADAPT6 fused to an albumin binding domain (ABD) for increased bioavailability and conjugated to DM1 for cytotoxic action, designated as ADAPT6-ABD-mcDM1. In this study, we investigated the therapeutic efficacy of this conjugate in mice bearing HER2-expressing SKOV3 ovarian cancer xenografts. A secondary aim was to evaluate several formats of imaging probes for visualization of HER2 expression in tumors. Administration of ADAPT6-ABD-mcDM1 provided a significant delay of tumor growth and increased the median survival of the mice, in comparison with both a non-targeting homologous construct (ADAPTNeg-ABD-mcDM1) and the vehicle-treated groups, without inducing toxicity to liver or kidneys. Moreover, the evaluation of imaging probes showed that small scaffold proteins, such as 99mTc(CO)3-ADAPT6 or the affibody molecule 99mTc-ZHER2:41071, are well suited as diagnostic companions for potential stratification of patients for ADAPT6-ABD-mcDM1-based therapy.

17.
Pharmaceutics ; 13(11)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34834262

RESUMEN

Albumin binding domain derived affinity proteins (ADAPTs) are a class of small and folded engineered scaffold proteins that holds great promise for targeting cancer tumors. Here, we have extended the in vivo half-life of an ADAPT, targeting the human epidermal growth factor receptor 2 (HER2) by fusion with an albumin binding domain (ABD), and armed it with the highly cytotoxic payload mertansine (DM1) for an investigation of its properties in vitro and in vivo. The resulting drug conjugate, ADAPT6-ABD-mcDM1, retained binding to its intended targets, namely HER2 and serum albumins. Further, it was able to specifically bind to cells with high HER2 expression, get internalized, and showed potent toxicity, with IC50 values ranging from 5 to 80 nM. Conversely, no toxic effect was found for cells with low HER2 expression. In vivo, ADAPT6-ABD-mcDM1, radiolabeled with 99mTc, was characterized by low uptake in most normal organs, and the main excretion route was shown to be through the kidneys. The tumor uptake was 5.5% ID/g after 24 h, which was higher than the uptake in all normal organs at this time point except for the kidneys. The uptake in the tumors was blockable by pre-injection of an excess of the monoclonal antibody trastuzumab (having an overlapping epitope on the HER2 receptor). In conclusion, half-life extended drug conjugates based on the ADAPT platform of affinity proteins holds promise for further development towards targeted cancer therapy.

18.
Pharmaceutics ; 13(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672373

RESUMEN

Epidermal growth factor receptor (EGFR) is overexpressed in many malignancies. EGFR-targeted therapy extends survival of patients with disseminated cancers. Radionuclide molecular imaging of EGFR expression would make EGFR-directed treatment more personalized and therefore more efficient. A previous study demonstrated that affibody molecule [68Ga]Ga-DFO-ZEGFR:2377 permits specific positron-emission tomography (PET) imaging of EGFR expression in xenografts at 3 h after injection. We anticipated that imaging at 24 h after injection would provide higher contrast, but this is prevented by the short half-life of 68Ga (67.6 min). Here, we therefore tested the hypothesis that the use of the non-conventional long-lived positron emitter 66Ga (T1/2 = 9.49 h, ß+ = 56.5%) would permit imaging with higher contrast. 66Ga was produced by the 66Zn(p,n)66Ga nuclear reaction and DFO-ZEGFR:2377 was efficiently labelled with 66Ga with preserved binding specificity in vitro and in vivo. At 24 h after injection, [66Ga]Ga-DFO-ZEGFR:2377 provided 3.9-fold higher tumor-to-blood ratio and 2.3-fold higher tumor-to-liver ratio than [68Ga]Ga-DFO-ZEGFR:2377 at 3 h after injection. At the same time point, [66Ga]Ga-DFO-ZEGFR:2377 provided 1.8-fold higher tumor-to-blood ratio, 3-fold higher tumor-to-liver ratio, 1.9-fold higher tumor-to-muscle ratio and 2.3-fold higher tumor-to-bone ratio than [89Zr]Zr-DFO-ZEGFR:2377. Biodistribution data were confirmed by whole body PET combined with magnetic resonance imaging (PET/MRI). The use of the positron emitter 66Ga for labelling of DFO-ZEGFR:2377 permits PET imaging of EGFR expression at 24 h after injection and improves imaging contrast.

19.
Cancers (Basel) ; 13(14)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34298801

RESUMEN

The epithelial cell adhesion molecule (EpCAM) is intensively overexpressed in 40-60% of prostate cancer (PCa) cases and can be used as a target for the delivery of drugs and toxins. The designed ankyrin repeat protein (DARPin) Ec1 has a high affinity to EpCAM (68 pM) and a small size (18 kDa). Radiolabeled Ec1 might be used as a companion diagnostic for the selection of PCa patients for therapy. The study aimed to investigate the influence of radiolabel position (N- or C-terminal) and composition on the targeting and imaging properties of Ec1. Two variants, having an N- or C-terminal cysteine, were produced, site-specifically conjugated to a DOTA chelator and labeled with cobalt-57, gallium-68 or indium-111. Site-specific radioiodination was performed using ((4-hydroxyphenyl)-ethyl)maleimide (HPEM). Biodistribution of eight radiolabeled Ec1-probes was measured in nude mice bearing PCa DU145 xenografts. In all cases, positioning of a label at the C-terminus provided the best tumor-to-organ ratios. The non-residualizing [125I]I-HPEM label provided the highest tumor-to-muscle and tumor-to-bone ratios and is more suitable for EpCAM imaging in early-stage PCa. Among the radiometals, indium-111 provided the highest tumor-to-blood, tumor-to-lung and tumor-to-liver ratios and could be used at late-stage PCa. In conclusion, label position and composition are important for the DARPin Ec1.

20.
Biomaterials ; 266: 120381, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120197

RESUMEN

Molecular recognition in targeted therapeutics is typically based on immunoglobulins. Development of engineered scaffold proteins (ESPs) has provided additional opportunities for the development of targeted therapies. ESPs offer inexpensive production in prokaryotic hosts, high stability and convenient approaches to modify their biodistribution. In this study, we demonstrated successful modification of the biodistribution of an ESP known as ADAPT (Albumin-binding domain Derived Affinity ProTein). ADAPTs are selected from a library based on the scaffold of ABD (Albumin Binding Domain) of protein G. A particular ADAPT, the ADAPT6, binds to human epidermal growth factor receptor type 2 (HER2) with high affinity. Preclinical and early clinical studies have demonstrated that radiolabeled ADAPT6 can image HER2-expression in tumors with high contrast. However, its rapid glomerular filtration and high renal reabsorption have prevented its use in radionuclide therapy. To modify the biodistribution, ADAPT6 was genetically fused to an ABD. The non-covalent binding to the host's albumin resulted in a 14-fold reduction of renal uptake and appreciable increase of tumor uptake for the best variant, 177Lu-DOTA-ADAPT6-ABD035. Experimental therapy in mice bearing HER2-expressing xenografts demonstrated more than two-fold increase of median survival even after a single injection of 18 MBq 177Lu-DOTA-ADAPT6-ABD035. Thus, a fusion with ABD and optimization of the molecular design provides ADAPT derivatives with attractive targeting properties for radionuclide therapy.


Asunto(s)
Proteínas , Radioterapia , Receptor ErbB-2 , Albúminas , Animales , Línea Celular Tumoral , Ratones , Proteínas/metabolismo , Radioisótopos , Receptor ErbB-2/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA