Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nucleic Acids Res ; 49(9): 5294-5307, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33877360

RESUMEN

Members of the ribonuclease III (RNase III) family regulate gene expression by processing double-stranded RNA (dsRNA). This family includes eukaryotic Dicer and Drosha enzymes that generate small dsRNAs in the RNA interference (RNAi) pathway. The fungus Mucor lusitanicus, which causes the deadly infection mucormycosis, has a complex RNAi system encompassing a non-canonical RNAi pathway (NCRIP) that regulates virulence by degrading specific mRNAs. In this pathway, Dicer function is replaced by R3B2, an atypical class I RNase III, and small single-stranded RNAs (ssRNAs) are produced instead of small dsRNA as Dicer-dependent RNAi pathways. Here, we show that R3B2 forms a homodimer that binds to ssRNA and dsRNA molecules, but exclusively cuts ssRNA, in contrast to all known RNase III. The dsRNA cleavage inability stems from its unusual RNase III domain (RIIID) because its replacement by a canonical RIIID allows dsRNA processing. A crystal structure of R3B2 RIIID resembles canonical RIIIDs, despite the low sequence conservation. However, the groove that accommodates dsRNA in canonical RNases III is narrower in the R3B2 homodimer, suggesting that this feature could be responsible for the cleavage specificity for ssRNA. Conservation of this activity in R3B2 proteins from other mucormycosis-causing Mucorales fungi indicates an early evolutionary acquisition.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Mucor/enzimología , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Evolución Molecular , Proteínas Fúngicas/genética , Modelos Moleculares , Mucorales/enzimología , Mucorales/patogenicidad , Dominios Proteicos , ARN/metabolismo , Ribonucleasa III/genética , Virulencia
2.
PLoS Genet ; 16(7): e1008611, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32658892

RESUMEN

Epimutations in fungal pathogens are emerging as novel phenomena that could explain the fast-developing resistance to antifungal drugs and other stresses. These epimutations are generated by RNA interference (RNAi) mechanisms that transiently silence specific genes to overcome stressful stimuli. The early-diverging fungus Mucor circinelloides exercises a fine control over two interacting RNAi pathways to produce epimutants: the canonical RNAi pathway and a new RNAi degradative pathway. The latter is considered a non-canonical RNAi pathway (NCRIP) because it relies on RNA-dependent RNA polymerases (RdRPs) and a novel ribonuclease III-like named R3B2 to degrade target transcripts. Here in this work, we uncovered the role of NCRIP in regulating virulence processes and transposon movements through key components of the pathway, RdRP1 and R3B2. Mutants in these genes are unable to launch a proper virulence response to macrophage phagocytosis, resulting in a decreased virulence potential. The transcriptomic profile of rdrp1Δ and r3b2Δ mutants revealed a pre-exposure adaptation to the stressful phagosomal environment even when the strains are not confronted by macrophages. These results suggest that NCRIP represses key targets during regular growth and releases its control when a stressful environment challenges the fungus. NCRIP interacts with the RNAi canonical core to protect genome stability by controlling the expression of centromeric retrotransposable elements. In the absence of NCRIP, these retrotransposons are robustly repressed by the canonical RNAi machinery; thus, supporting the antagonistic role of NCRIP in containing the epimutational pathway. Both interacting RNAi pathways might be essential to govern host-pathogen interactions through transient adaptations, contributing to the unique traits of the emerging infection mucormycosis.


Asunto(s)
Mucorales/genética , Mucormicosis/genética , Interferencia de ARN , Ribonucleasa III/genética , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Epigénesis Genética/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/genética , Inestabilidad Genómica/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Mucorales/patogenicidad , Mucormicosis/microbiología , Mutación/genética , ARN Mensajero/genética , Transducción de Señal/efectos de los fármacos , Virulencia/genética
3.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408814

RESUMEN

The study of the Mucoralean fungi physiology is a neglected field that the lack of effective genetic tools has hampered in the past. However, the emerging fungal infection caused by these fungi, known as mucormycosis, has prompted many researchers to study the pathogenic potential of Mucorales. The main reasons for this current attraction to study mucormycosis are its high lethality, the lack of effective antifungal drugs, and its recent increased incidence. The most contemporary example of the emergence character of mucormycosis is the epidemics declared in several Asian countries as a direct consequence of the COVID-19 pandemic. Fortunately, this pressure to understand mucormycosis and develop new treatment strategies has encouraged the blossoming of new genetic techniques and methodologies. This review describes the history of genetic manipulation in Mucorales, highlighting the development of methods and how they allowed the main genetic studies in these fungi. Moreover, we have emphasized the recent development of new genetic models to study mucormycosis, a landmark in the field that will configure future research related to this disease.


Asunto(s)
COVID-19 , Mucorales , Mucormicosis , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , COVID-19/genética , Técnicas Genéticas , Humanos , Mucorales/genética , Mucormicosis/tratamiento farmacológico , Mucormicosis/epidemiología , Mucormicosis/genética , Pandemias
4.
Cell Microbiol ; 22(10): e13236, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32562333

RESUMEN

Mucor circinelloides, a dimorphic opportunistic pathogen, expresses three heterotrimeric G-protein beta subunits (Gpb1, Gpb2 and Gpb3). The Gpb1-encoding gene is up-regulated during mycelial growth compared with that in the spore or yeast stage. gpb1 deletion mutation analysis revealed its relevance for an adequate development during the dimorphic transition and for hyphal growth under low oxygen concentrations. Infection assays in mice indicated a phenotype with considerably reduced virulence and tissue invasiveness in the deletion mutants (Δgpb1) and decreased host inflammatory response. This finding could be attributed to the reduced filamentous growth in animal tissues compared with that of the wild-type strain. Mutation in a regulatory subunit of cAMP-dependent protein kinase A (PKA) subunit (PkaR1) resulted in similar phenotypes to Δgpb1. The defects exhibited by the Δgpb1 strain were genetically suppressed by pkaR1 overexpression, indicating that the PKA pathway is controlled by Gpb1 in M. circinelloides. Moreover, during growth under low oxygen levels, cAMP levels were much higher in the Δgpb1 than in the wild-type strain, but similar to those in the ΔpkaR1 strain. These findings reveal that M. circinelloides possesses a signal transduction pathway through which the Gpb1 heterotrimeric G subunit and PkaR1 control mycelial growth in response to low oxygen levels.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Mucor/crecimiento & desarrollo , AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Subunidades beta de la Proteína de Unión al GTP/genética , Genes Fúngicos , Hifa/crecimiento & desarrollo , Mucor/metabolismo , Mucor/patogenicidad , Mutación , Micelio/crecimiento & desarrollo , Oxígeno/análisis , Transducción de Señal , Virulencia/genética
5.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668930

RESUMEN

Mucormycosis is a lethal disease caused by Mucorales, which are emerging as human causes that explain the high mortality for this disease. Consequently, the research community is searching for virulence determinants that could be repurposed as targets to develop new treatments against mucormycosis. Our work explores an RNA interference (RNAi)-based approach to find targets involved in the virulence of Mucorales. A transcriptomewide analysis compared sRNAs and their target mRNAs in two Mucor lusitanicus different pathotypes, virulent and avirulent, generating a list of 75 loci selected by their differential sRNA accumulation in these strains. As a proof of concept and validity, an experimental approach characterized two loci showing opposite behavior, confirming that RNAi activity causes their differential expression in the two pathotypes. We generated deletion mutants for two loci and a knockin-strain overexpressing for one of these loci. Their functional analysis in murine virulence assays identified the gene wex1, a putative DEDDy exonuclease with RNase domains, as an essential factor for virulence. The identification of wex1 showed the potential of our approach to discover virulence factors not only in Mucorales but also in any other fungal model with an active RNAi machinery. More importantly, it adds a new layer to the biological processes controlled by RNAi in M. lusitanicus, confirming that the Dicer-dependent RNAi pathway can silence gene expression to promote virulence.


Asunto(s)
Exonucleasas/genética , Mucorales/genética , Mucorales/patogenicidad , Interferencia de ARN , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , Transcriptoma/genética , Virulencia/genética
6.
BMC Genomics ; 21(1): 135, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039703

RESUMEN

BACKGROUND: Despite a growing number of investigations on early diverging fungi, the corresponding lineages have not been as extensively characterized as Ascomycota or Basidiomycota ones. The Mucor genus, pertaining to one of these lineages is not an exception. To this date, a restricted number of Mucor annotated genomes is publicly available and mainly correspond to the reference species, Mucor circinelloides, and to medically relevant species. However, the Mucor genus is composed of a large number of ubiquitous species as well as few species that have been reported to specifically occur in certain habitats. The present study aimed to expand the range of Mucor genomes available and identify potential genomic imprints of adaptation to different environments and lifestyles in the Mucor genus. RESULTS: In this study, we report four newly sequenced genomes of Mucor isolates collected from non-clinical environments pertaining to species with contrasted lifestyles, namely Mucor fuscus and Mucor lanceolatus, two species used in cheese production (during ripening), Mucor racemosus, a recurrent cheese spoiler sometimes described as an opportunistic animal and human pathogen, and Mucor endophyticus, a plant endophyte. Comparison of these new genomes with those previously available for six Mucor and two Rhizopus (formerly identified as M. racemosus) isolates allowed global structural and functional description such as their TE content, core and species-specific genes and specialized genes. We proposed gene candidates involved in iron metabolism; some of these genes being known to be involved in pathogenicity; and described patterns such as a reduced number of CAZymes in the species used for cheese ripening as well as in the endophytic isolate that might be related to adaptation to different environments and lifestyles within the Mucor genus. CONCLUSIONS: This study extended the descriptive data set for Mucor genomes, pointed out the complexity of obtaining a robust phylogeny even with multiple genes families and allowed identifying contrasting potentially lifestyle-associated gene repertoires. The obtained data will allow investigating further the link between genetic and its biological data, especially in terms of adaptation to a given habitat.


Asunto(s)
Adaptación Fisiológica/genética , Genómica , Estilo de Vida , Mucor/genética , Secuencia de Bases/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Filogenia , Especificidad de la Especie
8.
Curr Microbiol ; 77(2): 220-231, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31802201

RESUMEN

The mitochondrial citrate transport system, composed of citrate and malate transporters (MTs), can regulate the citrate efflux from mitochondria to cytosol, and then citrate is cleaved into OAA and acetyl-CoA which can be used for fatty acid (FA) biosynthesis. However, in the fungus Mucor circinelloides the molecular mechanism of citrate efflux from the mitochondria by this system and its role in FA synthesis is unclear. In the present study, we have analyzed the genome of high lipid-producing strain WJ11 and the low lipid-producing strain CBS 277.49 to find the potential genes involving in this system. Five potential genes are present in the genome of WJ11. These genes encode one citrate transport protein (CT), one tricarboxylate carrier (TCT), one MT, and two 2-oxoglutarate:malate antiporters (SoDIT-a and SoDIT-b). However, the genome of CBS 277.49 contains the same set of genes, except for the presence of just one SoDIT. The proteins from WJ11 had similar properties as their counterparts in CBS 277.49. Moreover, phylogenetic analyses revealed the evolutionary relationship of these proteins and illuminated their typical motifs related to potential functions. Additionally, the expression of these genes was analyzed to predict the possible functions in lipid metabolism in M. circinelloides. This is the first study to report the in silico analysis of structures and functions of the mitochondrial citrate transport system in M. circinelloides. This work showed a new strategy for research for the selection of candidate genes for further detailed functional investigation of the mitochondrial citrate transport system in lipid accumulation.


Asunto(s)
Citratos/metabolismo , Lípidos/biosíntesis , Mitocondrias/metabolismo , Mucor/clasificación , Mucor/metabolismo , Filogenia , Transporte Biológico , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Metabolismo de los Lípidos
9.
Fungal Genet Biol ; 129: 40-51, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31014992

RESUMEN

Mucor circinelloides is an etiologic agent of mucormycosis, a fungal infection produced by Mucorales often associated with mortality due to unavailability of antifungal drugs. Arl proteins belong to the Arf family and are involved in vesicle trafficking and tubulin assembly. This study identified two Arl (Arf-like)-encoding genes, arl1 and arl2, in M. circinelloides and explored their function in morphogenesis, virulence, and antifungal susceptibility. Although Arl1 and Arl2 proteins shared 55% amino acid sequence identity, arl1 and arl2 genes showed distinct transcriptional expression patterns. arl1 was expressed at higher levels than arl2 and induced in mycelia, suggesting a role in morphological transitions. Disruption of the arl1 and arl2 genes led to heterokaryon (Δarl1(+)(-)) and homokaryon (Δarl2) genotypes, respectively. The incapacity to generate homokaryon mutants for arl1 suggested that it is essential for growth of M. circinelloides. Deletion of each gene reduced the expression of the other, suggesting the existence of a positive cross-regulation between them. Thus, deletion of arl2 resulted in a ~60% reduction of arl1 expression, whereas the Δarl1(+)(-) showed ∼90% reduction of arl1 expression. Mutation of arl2 showed no phenotype or a mild phenotype between Δarl1(+)(-) and wild-type (WT), suggesting that all observed phenotypes in both mutant strains corresponded to arl1 low expression. The Δarl1(+)(-) produced a small amount of spores that showed increased sensitivity to dodecyl-sulfate and azoles, suggesting a defect in the cell wall that was further supported by decrease in saccharide content. These defects in the cell wall were possibly originated by abnormal vesicle trafficking since FM4-64 staining of both mutants Δarl1(+)(-) and Δarl2 revealed less well-localized endosomes compared to the WT. Moreover, aberrant vesicle trafficking may be responsible for the secretion of specific virulence-related proteins since cell-free medium from Δarl1(+)(-) were found to increase killing of Caenorhabditis elegans compared to WT.


Asunto(s)
Antifúngicos/farmacología , Proteínas Fúngicas/genética , Mucor/efectos de los fármacos , Mucor/genética , Genotipo , Mucor/patogenicidad , Mutación , Filogenia , Transporte de Proteínas , Esporas Fúngicas/patogenicidad , Proteínas de Transporte Vesicular/genética , Virulencia
10.
PLoS Pathog ; 13(1): e1006150, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28107502

RESUMEN

Mucorales are an emerging group of human pathogens that are responsible for the lethal disease mucormycosis. Unfortunately, functional studies on the genetic factors behind the virulence of these organisms are hampered by their limited genetic tractability, since they are reluctant to classical genetic tools like transposable elements or gene mapping. Here, we describe an RNAi-based functional genomic platform that allows the identification of new virulence factors through a forward genetic approach firstly described in Mucorales. This platform contains a whole-genome collection of Mucor circinelloides silenced transformants that presented a broad assortment of phenotypes related to the main physiological processes in fungi, including virulence, hyphae morphology, mycelial and yeast growth, carotenogenesis and asexual sporulation. Selection of transformants with reduced virulence allowed the identification of mcplD, which encodes a Phospholipase D, and mcmyo5, encoding a probably essential cargo transporter of the Myosin V family, as required for a fully virulent phenotype of M. circinelloides. Knock-out mutants for those genes showed reduced virulence in both Galleria mellonella and Mus musculus models, probably due to a delayed germination and polarized growth within macrophages. This study provides a robust approach to study virulence in Mucorales and as a proof of concept identified new virulence determinants in M. circinelloides that could represent promising targets for future antifungal therapies.


Asunto(s)
Proteínas Fúngicas/genética , Larva/microbiología , Mariposas Nocturnas/microbiología , Mucor/patogenicidad , Mucormicosis/patología , Miosina Tipo V/genética , Fosfolipasa D/genética , Factores de Virulencia/genética , Animales , Antifúngicos/farmacología , Farmacorresistencia Fúngica Múltiple , Macrófagos/microbiología , Masculino , Ratones , Mucor/genética , Mucormicosis/virología , Interferencia de ARN , ARN Interferente Pequeño/genética
11.
Microb Cell Fact ; 18(1): 64, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30943965

RESUMEN

BACKGROUND: Dihomo-gamma linolenic acid (DGLA, 20:3, n-6) is the elongated product of Gamma linolenic acid (GLA, 18:3, n-6) catalyzed by the enzyme delta-6 elongase (D6E) or gamma linolenic acid elongase (GLELO). Construction of engineered oleaginous microbes have been attracting significant interest to produce DGLA because of its nutritional value and medicinal applications. Mucor circinelloides is a GLA producing filamentous fungus which can be a useful tool to produce DGLA. We have, therefore, overexpressed the D6E (GLELO) gene in this fungus to construct DGLA producing cell factory. RESULT: To produce DGLA in M. circinelloides, homologous overexpression of D6E (GLELO) gene was analyzed. When the gene was overexpressed in M. circinelloides CBS277.49, up to 5.72% DGLA was produced in this strain. CONCLUSION: To our knowledge, this is the first report describing the overexpression of D6E (GLELO) gene in M. circinelloides to construct DGLA producing cell factory. A new scope for further research has been established by this work for improved production of DGLA in this fungus, specifically in its high lipid-producing strain, WJ11.


Asunto(s)
Mucor/genética , Mucor/metabolismo , Ácido gammalinolénico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edición Génica
12.
Int J Mol Sci ; 20(7)2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30987311

RESUMEN

Stearidonic acid (SDA; 18:4, n-3) is the delta 15-desaturase product of gamma linolenic acid (GLA; 18:3, n-6) and delta 6-desaturase product of alpha linolenic acid (ALA; 18:3, n-3). Construction of engineered oleaginous microbes have been attracting significant interest in producing SDA because of its nutritional value and pharmaceutical applications. Mucor circinelloides is a GLA producing filamentous fungus, which can be a useful tool to produce SDA. This study has, therefore, overexpressed the delta-15 desaturase (D15D) gene from Mortierella alpina in this fungus to construct a SDA-producing cell factory. To produce SDA in M. circinelloides, the homologous overexpression of D15D gene was analyzed. When the gene was overexpressed in M. circinelloides CBS 277.49, up to 5.0% SDA was accumulated in this strain. According to current knowledge, this is the first study describing the construction of a SDA-producing cell factory by overexpression of D15D gene in oleaginous fungus M. circinelloides. A new scope for further research has been established by this work to improve SDA production in this fungus, specifically in its high lipid-producing strain, WJ11.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Mucor/genética , Mucor/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Mortierella/genética , Mortierella/metabolismo , Ácido alfa-Linolénico/metabolismo , Ácido gammalinolénico/metabolismo
13.
Int J Mol Sci ; 20(3)2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759801

RESUMEN

Increasing energy demands and health-related concerns worldwide have motivated researchers to adopt diverse strategies to improve medium-chain fatty acid (MCFA) biosynthesis for use in the functional food and aviation industries. The abundance of naturally produced MCFAs from botanical sources (i.e., coconut fruit/seeds and palm tree) has been observed to be insufficient compared with the various microorganisms used to cope with industrial demands. Mucor circinelloides is one of many promising microorganisms; it exhibits diverse biotechnological importance ranging from the production of functional lipids to applications in the manufacture of bio-fuel. Thus, research was conducted to acquire the desired elevated amounts of MCFAs (i.e., C8⁻C12) from metabolically engineered strains of M. circinelloides M65. To achieve this goal, four different acyl-acyl carrier protein (ACP) thioesterase (TE)-encoding genes exhibiting a substrate preference for medium-chain acyl-ACP molecules were expressed in M. circinelloides M65, resulting in the generation of C8⁻C12 fatty acids. Among all the engineered strains, M65-TE-03 and M65-TE-04 demonstrated the highest production of non-native C8⁻C10 and C12 fatty acids, respectively, in comparison to the control. These recombinant strains biosynthesized MCFAs de novo within the range from 28 to 46% (i.e., 1.14 to 2.77 g/L) of total cell lipids. Moreover, the reduction in chain length eventually resulted in a 1.5⁻1.75-fold increase in total lipid productivity in the engineered strains. The MCFAs were also found to be integrated into all lipid classes. This work illustrates how the integration of heterologous enzymes in M. circinelloides can offer a novel opportunity to edit the fatty acid synthases (FAS) complex, resulting in increased production of microbial MFCAs.


Asunto(s)
Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Mucor/metabolismo , Lípidos/química , Ingeniería Metabólica/métodos
14.
Curr Genet ; 64(4): 853-869, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29264641

RESUMEN

Mucor circinelloides is a dimorphic fungus used to study cell differentiation that has emerged as a model to characterize mucormycosis. In this work, we identified four ADP-ribosylation factor (Arf)-encoding genes (arf1-arf4) and study their role in the morphogenesis and virulence. Arfs are key regulators of the vesicular trafficking process and are associated with both growth and virulence in fungi. Arf1 and Arf2 share 96% identity and Arf3 and Arf4 share 89% identity, which suggests that the genes arose through gene-duplication events in M. circinelloides. Transcription analysis revealed that certain arf genes are affected by dimorphism of M. circinelloides, such as the arf2 transcript, which was accumulated during yeast development. Therefore, we created knockout mutants of four arf genes to evaluate their function in dimorphism and virulence. We found that both arf1 and arf2 are required for sporulation, but these genes also perform distinct functions; arf2 participates in yeast development, whereas arf1 is involved in aerobic growth. Conversely, arf3 and arf4 play only minor roles during aerobic growth. Moreover, we observed that all single arf-mutant strains are more virulent than the wild-type strain in mouse and nematode models, with the arf3 mutant being most virulent. Lastly, arf1/arf2 and arf3/arf4 double mutations produced heterokaryon strains that did not reach the homokaryotic state, indicating that these genes participate in essential and redundant functions. Overall, this work reveals that Arfs proteins regulate important cellular processes in M. circinelloides such as morphogenesis and virulence, laying the foundation to characterize the molecular networks underlying this regulation.


Asunto(s)
Factores de Ribosilacion-ADP/genética , ADP-Ribosilación/genética , Mucor/genética , Mucormicosis/genética , Secuencia de Aminoácidos/genética , Animales , Clonación Molecular , Ratones , Mucor/patogenicidad , Mucormicosis/microbiología , Saccharomyces cerevisiae/genética , Virulencia/genética
15.
PLoS Genet ; 11(4): e1005168, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25875805

RESUMEN

The increasing knowledge on the functional relevance of endogenous small RNAs (esRNAs) as riboregulators has stimulated the identification and characterization of these molecules in numerous eukaryotes. In the basal fungus Mucor circinelloides, an emerging opportunistic human pathogen, esRNAs that regulate the expression of many protein coding genes have been described. These esRNAs share common machinery for their biogenesis consisting of an RNase III endonuclease Dicer, a single Argonaute protein and two RNA-dependent RNA polymerases. We show in this study that, besides participating in this canonical dicer-dependent RNA interference (RNAi) pathway, the rdrp genes are involved in a novel dicer-independent degradation process of endogenous mRNAs. The analysis of esRNAs accumulated in wild type and silencing mutants demonstrates that this new rdrp-dependent dicer-independent regulatory pathway, which does not produce sRNA molecules of discrete sizes, controls the expression of target genes promoting the specific degradation of mRNAs by a previously unknown RNase. This pathway mainly regulates conserved genes involved in metabolism and cellular processes and signaling, such as those required for heme biosynthesis, and controls responses to specific environmental signals. Searching the Mucor genome for candidate RNases to participate in this pathway, and functional analysis of the corresponding knockout mutants, identified a new protein, R3B2. This RNase III-like protein presents unique domain architecture, it is specifically found in basal fungi and, besides its relevant role in the rdrp-dependent dicer-independent pathway, it is also involved in the canonical dicer-dependent RNAi pathway, highlighting its crucial role in the biogenesis and function of regulatory esRNAs. The involvement of RdRPs in RNA degradation could represent the first evolutionary step towards the development of an RNAi mechanism and constitutes a genetic link between mRNA degradation and post-transcriptional gene silencing.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Mucor/genética , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mucor/enzimología , Mucor/metabolismo , ARN Mensajero/genética , Ribonucleasa III/química , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
16.
Microb Cell Fact ; 16(1): 113, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28637506

RESUMEN

BACKGROUND: γ-Linolenic acid (GLA) is important because of its nutritional value and medicinal applications. Although the biosynthetic pathways of some plant and microbial GLA have been deciphered, current understanding of the correlation between desaturases and GLA synthesis in oleaginous fungi is incomplete. In previous work, we found that a large amount of oleic acid (OA) had not been converted to linoleic acid (LA) or GLA in Mucor circinelloides CBS 277.49, which may be due to inadequate activities of the delta-12 or delta-6 desaturases, and thus leading to the accumulation of OA and LA. Thus, it is necessary to explore the main contributing factor during the process of GLA biosynthesis in M. circinelloides. RESULTS: To enhance GLA production in M. circinelloides, homologous overexpression of delta-12 and two delta-6 desaturases (named delta-6-1 and delta-6-2, respectively) were analyzed. When delta-6 desaturase were overexpressed in M. circinelloides, up to 43% GLA was produced in the total fatty acids, and the yield of GLA reached 180 mg/l, which were, respectively, 38 and 33% higher than the control strain. CONCLUSION: These findings revealed that delta-6 desaturase (especially for delta-6-1 desaturase) plays an important role in GLA synthesis by M. circinelloides. The strain overexpressing delta-6-1 desaturase may have potential application in microbial GLA production.


Asunto(s)
Ácido Graso Desaturasas/genética , Linoleoil-CoA Desaturasa/genética , Mucor/genética , Mucor/metabolismo , Ácido gammalinolénico/biosíntesis , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Fermentación , Expresión Génica , Linoleoil-CoA Desaturasa/metabolismo , Mucor/enzimología , Ácido gammalinolénico/genética , Ácido gammalinolénico/aislamiento & purificación , Ácido gammalinolénico/metabolismo
17.
Biotechnol Lett ; 39(3): 439-446, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27909822

RESUMEN

OBJECTIVES: To generate lycopene-overproducing strains of the fungus Mucor circinelloides with interest for industrial production and to gain insight into the catalytic mechanism of lycopene cyclase and regulatory process during lycopene overaccumulation. RESULTS: Three lycopene-overproducing mutants were generated by classic mutagenesis techniques from a ß-carotene-overproducing strain. They carried distinct mutations in the carRP gene encoding lycopene cyclase that produced loss of enzymatic activity to different extents. In one mutant (MU616), the lycopene cyclase was completely destroyed, and a 43.8% (1.1 mg/g dry mass) increase in lycopene production was observed in comparison to that by the previously existing lycopene overproducer. In addition, feedback regulation of the end product was suggested in lycopene-overproducing strains. CONCLUSIONS: A lycopene-overaccumulating strain of the fungus M. circinelloides was generated that could be an alternative for the industrial production of lycopene. Vital catalytic residues for lycopene cyclase activity and the potential mechanism of lycopene formation and accumulation were identified.


Asunto(s)
Carotenoides/biosíntesis , Mucor/metabolismo , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Licopeno , Mucor/genética , Mucor/aislamiento & purificación , Mutación/genética , Pigmentación
18.
Microb Cell Fact ; 15: 99, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27266994

RESUMEN

BACKGROUND: Carotenoids are natural pigments with antioxidant properties that have important functions in human physiology and must be supplied through the diet. They also have important industrial applications as food colourants, animal feed additives and nutraceuticals. Some of them, such as ß-carotene, are produced on an industrial scale with the use of microorganisms, including fungi. The mucoral Blakeslea trispora is used by the industry to produce ß-carotene, although optimisation of production by molecular genetic engineering is unfeasible. However, the phylogenetically closely related Mucor circinelloides, which is also able to accumulate ß-carotene, possesses a vast collection of genetic tools with which to manipulate its genome. RESULTS: This work combines classical forward and modern reverse genetic techniques to deepen the regulation of carotenoid synthesis and generate candidate strains for biotechnological production of ß-carotene. Mutagenesis followed by screening for mutants with altered colour in the dark and/or in light led to the isolation of 26 mutants that, together with eight previously isolated mutants, have been analysed in this work. Although most of the mutants harboured mutations in known structural and regulatory carotenogenic genes, eight of them lacked mutations in those genes. Whole-genome sequencing of six of these strains revealed the presence of many mutations throughout their genomes, which makes identification of the mutation that produced the phenotype difficult. However, deletion of the crgA gene, a well-known repressor of carotenoid biosynthesis in M. circinelloides, in two mutants (MU206 and MU218) with high levels of ß-carotene resulted in a further increase in ß-carotene content to differing extents with respect to the crgA single-null strain; in particular, one strain derived from MU218 was able to accumulate up to 4 mg/g of ß-carotene. The additive effect of crgA deletion and the mutations present in MU218 suggests the existence of a previously unknown regulatory mechanism that represses carotenoid biosynthesis independently and in parallel to crgA. CONCLUSIONS: The use of a mucoral model such as M. circinelloides can allow the identification of the regulatory mechanisms that control carotenoid biosynthesis, which can then be manipulated to generate tailored strains of biotechnological interest. Mutants in the repressor crgA and in the newly identified regulatory mechanism generated in this work accumulate high levels of ß-carotene and are candidates for further improvements in biotechnological ß-carotene production.


Asunto(s)
Proteínas Fúngicas/genética , Mucor/metabolismo , beta Caroteno/biosíntesis , Cromatografía Líquida de Alta Presión , Proteínas Fúngicas/metabolismo , Ingeniería Genética , Mucor/genética , Mutagénesis , Plásmidos/genética , Plásmidos/metabolismo , beta Caroteno/análisis
19.
Appl Microbiol Biotechnol ; 100(3): 1297-1305, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26512004

RESUMEN

Fatty acid biosynthesis in oleaginous fungi requires the supply of reducing power, NADPH, and the precursor of fatty acids, acetyl-CoA, which is generated in the cytosol being produced by ATP: citrate lyase which requires citrate to be, transported from the mitochondrion by the citrate/malate/pyruvate transporter. This transporter, which is within the mitochondrial membrane, transports cytosolic malate into the mitochondrion in exchange for mitochondrial citrate moving into the cytosol (Fig. 1). The role of malate transporter in lipid accumulation in oleaginous fungi is not fully understood, however. Therefore, the expression level of the mt gene, coding for a malate transporter, was manipulated in the oleaginous fungus Mucor circinelloides to analyze its effect on lipid accumulation. The results showed that mt overexpression increased the lipid content for about 70 % (from 13 to 22 % dry cell weight, CDW), whereas the lipid content in mt knockout mutant decreased about 27 % (from 13 to 9.5 % CDW) compared with the control strain. Furthermore, the extracellular malate concentration was decreased in the mt overexpressing strain and increased in the mt knockout strain compared with the wild-type strain. This work suggests that the malate transporter plays an important role in regulating lipid accumulation in oleaginous fungus M. circinelloides.


Asunto(s)
Proteínas Fúngicas/metabolismo , Metabolismo de los Lípidos , Malatos/metabolismo , Mucor/metabolismo , Transportadores de Anión Orgánico/metabolismo , Transporte Biológico , Proteínas Fúngicas/genética , Mucor/genética , Transportadores de Anión Orgánico/genética
20.
BMC Genomics ; 16: 237, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25880254

RESUMEN

BACKGROUND: RNA interference (RNAi) is a conserved mechanism of genome defence that can also have a role in the regulation of endogenous functions through endogenous small RNAs (esRNAs). In fungi, knowledge of the functions regulated by esRNAs has been hampered by lack of clear phenotypes in most mutants affected in the RNAi machinery. Mutants of Mucor circinelloides affected in RNAi genes show defects in physiological and developmental processes, thus making Mucor an outstanding fungal model for studying endogenous functions regulated by RNAi. Some classes of Mucor esRNAs map to exons (ex-siRNAs) and regulate expression of the genes from which they derive. To have a broad picture of genes regulated by the silencing machinery during vegetative growth, we have sequenced and compared the mRNA profiles of mutants in the main RNAi genes by using RNA-seq. In addition, we have achieved a more complete phenotypic characterization of silencing mutants. RESULTS: Deletion of any main RNAi gene provoked a deep impact in mRNA accumulation at exponential and stationary growth. Genes showing increased mRNA levels, as expected for direct ex-siRNAs targets, but also genes with decreased expression were detected, suggesting that, most probably, the initial ex-siRNA targets regulate the expression of other genes, which can be up- or down-regulated. Expression of 50% of the genes was dependent on more than one RNAi gene in agreement with the existence of several classes of ex-siRNAs produced by different combinations of RNAi proteins. These combinations of proteins have also been involved in the regulation of different cellular processes. Besides genes regulated by the canonical RNAi pathway, this analysis identified processes, such as growth at low pH and sexual interaction that are regulated by a dicer-independent non-canonical RNAi pathway. CONCLUSION: This work shows that the RNAi pathways play a relevant role in the regulation of a significant number of endogenous genes in M. circinelloides during exponential and stationary growth phases and opens up an important avenue for in-depth study of genes involved in the regulation of physiological and developmental processes in this fungal model.


Asunto(s)
Mucor/genética , Interferencia de ARN , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Concentración de Iones de Hidrógeno , Modelos Biológicos , Mucor/metabolismo , Mutación , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA