Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 19(8): 1606-1616, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36752562

RESUMEN

Chitosan-coated surfaces are of great interest for biomedical applications (antibacterial coatings, implants, would healing, single-cell microfluidics…). However, one major limitation of chitosan-based systems is the high solubility of the polymer under acidic aqueous conditions. Herein, we describe a simple procedure to prepare extremely smooth and stable chitosan coatings. In detail, chitosan films with a low degree of N-acetylation and of thicknesses varying from 40 nm to 10 µm were grafted onto epoxy-functionalized silicon wafers via an optimized water-temperature treatment (WTT). The formation of a grafted chitosan network insoluble in acidic aqueous media (pH 3.5) was evidenced and the films were stable for at least 2 days at pH 3.5. The film morphology and the swelling behavior were characterized by atomic force microscopy (AFM) and neutron reflectivity, which showed that the film roughness was extremely low. The physical cross-linking of the films was demonstrated using infrared spectroscopy, dynamic mechanical analysis (DMA) and wide-angle X-ray scattering (WAXS). Finally, we show that the swelling behavior of such films was largely influenced by the environmental conditions, such as the pH or ionic strength of the solution.

2.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887359

RESUMEN

The functionalization of surfaces using chitosan oligomers is of great interest for a wide range of applications in biomaterial and biomedical fields, as chitosan oligomers can provide various functional properties including biocompatibility, wetting, adhesion, and antibacterial activity. In this study, an innovative process for the regiospecific chemical grafting of reducing-end-modified chitosan oligomers brushes onto silicon wafers is described. Chitosan oligomers (COS) with well-defined structural parameters (average DP ~19 and DA ~0%) and bearing a 2,5-anhydro-d-mannofuranose (amf) unit at the reducing end were obtained via nitrous acid depolymerization of chitosan. After a silanization step where silicon wafers were modified with aromatic amine derivatives, grafting conditions were studied to optimize the reductive amination between aldehydes of amf-terminated COS and aromatic amines of silicon wafers. Functionalized surfaces were fully characterized by AFM, ATR-FTIR, ellipsometry, contact angle measurement, and ToF-SIMS techniques. Smooth surfaces were obtained with a COS layer about 3 nm thick and contact angle values between 72° and 76°. Furthermore, it was shown that the addition of the reducing agent NaBH3CN could positively improve the COS grafting density and/or led to a better stability of the covalent grafting to hydrolysis. Finally, this study also showed that this grafting process is also efficient for chitosan oligomers of higher DA (i.e., ~21%).


Asunto(s)
Quitosano , Materiales Biocompatibles , Quitosano/química , Hidrólisis , Silicio/química , Propiedades de Superficie
3.
Int J Biol Macromol ; 245: 125565, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379951

RESUMEN

Surface treatment by adhesive polymers is a promising solution to immobilize and study bacteria cells through microscopic assays and, for example, control their growth or determine their susceptibility to antibiotic treatment. The stability of such functional films in wet conditions is crucial, as the film degradation would compromise a persistent use of the coated devices. In this work, low roughness chitosan thin films of degrees of acetylation (DA) ranging from 0.5 % to 49 % were chemically grafted onto silicon and glass substrates and we have demonstrated how the physicochemical properties of the surfaces and the bacterial response were DA-dependent. A fully deacetylated chitosan film presented an anhydrous crystalline structure while the hydrated crystalline allomorph was the preferred structure at higher DA. Moreover, their hydrophilicity increased at higher DA, leading to higher film swelling. Low DA chitosan-grafted substrate favored bacterial growth away from the surface and could be envisioned as bacteriostatic surfaces. Contrarily, an optimum of Escherichia coli adhesion was found for substrates modified with chitosan of DA = 35 %: these surfaces are adapted for the study of bacterial growth and antibiotic testing, with the possibility of reusing the substrates without affecting the grafted film - ideal for limiting single-use devices.


Asunto(s)
Quitosano , Quitosano/química , Acetilación , Antibacterianos/farmacología , Antibacterianos/química , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA