Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 31(24): 6387-6389, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36373266

RESUMEN

The distribution and movement of species, broadly known as biogeography, is one of the fundamental subfields of ecology and evolutionary biology. However, significant mysteries remain about the processes that gave rise to the modern distribution of biodiversity across the globe. Over the last several decades, the genetic study of ancient and subfossil specimens has started to shed light on past migrations of some species, with a particular focus on humans and megafauna. In this issue of Molecular Ecology, Salis et al. (2021) use ancient mitogenomes and a new phylogeographic method to add an important new piece of evidence to the mystery of megafaunal migrations into North America during the Pleistocene. They found a striking synchronicity of brown bear (Ursus arctos) and lion (Panthera spp.) migrations across the Bering Land Bridge at several time points during the late Pleistocene, which highlights the lasting impact of sea level change on the prehistoric and modern dispersal of terrestrial carnivores across continents.


Asunto(s)
Carnívoros , Leones , Ursidae , Animales , Humanos , Carnívoros/genética , Filogeografía , Ursidae/genética , Evolución Biológica , América del Norte , Filogenia
2.
Mol Ecol ; 30(23): 6325-6339, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34510620

RESUMEN

Whole genome sequencing provides deep insights into the evolutionary history of a species, including patterns of diversity, signals of selection, and historical demography. When applied to closely related taxa with a wealth of background knowledge, population genomics provides a comparative context for interpreting population genetic summary statistics and comparing empirical results with the expectations of population genetic theory. The Galapagos giant tortoises (Chelonoidis spp.), an iconic rapid and recent radiation, offer such an opportunity. Here, we sequenced whole genomes from three individuals of the 12 extant lineages of Galapagos giant tortoise and estimate diversity measures and reconstruct changes in coalescent rate over time. We also compare the number of derived alleles in each lineage to infer how synonymous and nonsynonymous mutation accumulation rates correlate with population size and life history traits. Remarkably, we find that patterns of molecular evolution are similar within individuals of the same lineage, but can differ significantly among lineages, reinforcing the evolutionary distinctiveness of the Galapagos giant tortoise species. Notably, differences in mutation accumulation among lineages do not align with simple population genetic predictions, suggesting that the drivers of purifying selection are more complex than is currently appreciated. By integrating results from earlier population genetic and phylogeographic studies with new findings from the analysis of whole genomes, we provide the most in-depth insights to date on the evolution of Galapagos giant tortoises, and identify discrepancies between expectation from population genetic theory and empirical data that warrant further scrutiny.


Asunto(s)
Tortugas , Animales , Evolución Molecular , Genética de Población , Humanos , Densidad de Población , Tortugas/genética , Secuenciación Completa del Genoma
3.
Genes (Basel) ; 13(9)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36140828

RESUMEN

Coyotes are ubiquitous on the North American landscape as a result of their recent expansion across the continent. They have been documented in the heart of some of the most urbanized cities, such as Chicago, Los Angeles, and New York City. Here, we explored the genomic composition of 16 coyotes in the New York metropolitan area to investigate genomic demography and admixture for urban-dwelling canids in Queens County, New York. We identified moderate-to-high estimates of relatedness among coyotes living in Queens (r = 0.0-0.5) and adjacent neighborhoods, suggestive of a relatively small population. Although we found low background levels of domestic-dog ancestry across most coyotes in our sample (5%), we identified a male suspected to be a first-generation coyote-dog hybrid with 46% dog ancestry, as well as his two putative backcrossed offspring that carried approximately 25% dog ancestry. The male coyote-dog hybrid and one backcrossed offspring each carried two transposable element insertions that are associated with human-directed hypersociability in dogs and gray wolves. An additional, unrelated coyote with little dog ancestry also carried two of these insertions. These genetic patterns suggest that gene flow from domestic dogs may become an increasingly important consideration as coyotes continue to inhabit metropolitan regions.


Asunto(s)
Coyotes , Lobos , Animales , Coyotes/genética , Elementos Transponibles de ADN , Perros , Genómica , Humanos , Masculino , Ciudad de Nueva York , Lobos/genética
4.
Commun Biol ; 5(1): 546, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681083

RESUMEN

The status of the Fernandina Island Galapagos giant tortoise (Chelonoidis phantasticus) has been a mystery, with the species known from a single specimen collected in 1906. The discovery in 2019 of a female tortoise living on the island provided the opportunity to determine if the species lives on. By sequencing the genomes of both individuals and comparing them to all living species of Galapagos giant tortoises, here we show that the two known Fernandina tortoises are from the same lineage and distinct from all others. The whole genome phylogeny groups the Fernandina individuals within a monophyletic group containing all species with a saddleback carapace morphology and one semi-saddleback species. This grouping of the saddleback species is contrary to mitochondrial DNA phylogenies, which place the saddleback species across several clades. These results imply the continued existence of lineage long considered extinct, with a current known population size of a single individual.


Asunto(s)
Tortugas , Animales , ADN Mitocondrial/genética , Femenino , Genoma , Humanos , Filogenia , Tortugas/genética
5.
Genes (Basel) ; 13(7)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35886053

RESUMEN

The Hawaiian monk seal (HMS) is the single extant species of tropical earless seals of the genus Neomonachus. The species survived a severe bottleneck in the late 19th century and experienced subsequent population declines until becoming the subject of a NOAA-led species recovery effort beginning in 1976 when the population was fewer than 1000 animals. Like other recovering species, the Hawaiian monk seal has been reported to have reduced genetic heterogeneity due to the bottleneck and subsequent inbreeding. Here, we report a chromosomal reference assembly for a male animal produced using a variety of methods. The final assembly consisted of 16 autosomes, an X, and portions of the Y chromosomes. We compared variants in this animal to other HMS and to a frequently sequenced human sample, confirming about 12% of the variation seen in man. To confirm that the reference animal was representative of the HMS, we compared his sequence to that of 10 other individuals and noted similarly low variation in all. Variation in the major histocompatibility (MHC) genes was nearly absent compared to the orthologous human loci. Demographic analysis predicts that Hawaiian monk seals have had a long history of small populations preceding the bottleneck, and their current low levels of heterozygosity may indicate specialization to a stable environment. When we compared our reference assembly to that of other species, we observed significant conservation of chromosomal architecture with other pinnipeds, especially other phocids. This reference should be a useful tool for future evolutionary studies as well as the long-term management of this species.


Asunto(s)
Phocidae , Animales , Cromosomas , Inestabilidad Genómica , Hawaii/epidemiología , Humanos , Masculino , Phocidae/genética
6.
Nat Ecol Evol ; 3(1): 87-95, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510174

RESUMEN

Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George-the iconic last member of Chelonoidis abingdonii-and the Aldabra giant tortoise (Aldabrachelys gigantea). Comparison of these genomes with those of related species, using both unsupervised and supervised analyses, led us to detect lineage-specific variants affecting DNA repair genes, inflammatory mediators and genes related to cancer development. Our study also hints at specific evolutionary strategies linked to increased lifespan, and expands our understanding of the genomic determinants of ageing. These new genome sequences also provide important resources to help the efforts for restoration of giant tortoise populations.


Asunto(s)
Envejecimiento/genética , Genoma , Tortugas/genética , Animales , Reparación del ADN/genética , Evolución Molecular , Células HEK293 , Humanos , Mediadores de Inflamación , Masculino , Neoplasias/genética , Filogenia , Densidad de Población
7.
Evol Appl ; 11(7): 1084-1093, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30026799

RESUMEN

High-throughput DNA sequencing allows efficient discovery of thousands of single nucleotide polymorphisms (SNPs) in nonmodel species. Population genetic theory predicts that this large number of independent markers should provide detailed insights into population structure, even when only a few individuals are sampled. Still, sampling design can have a strong impact on such inferences. Here, we use simulations and empirical SNP data to investigate the impacts of sampling design on estimating genetic differentiation among populations that represent three species of Galápagos giant tortoises (Chelonoidis spp.). Though microsatellite and mitochondrial DNA analyses have supported the distinctiveness of these species, a recent study called into question how well these markers matched with data from genomic SNPs, thereby questioning decades of studies in nonmodel organisms. Using >20,000 genomewide SNPs from 30 individuals from three Galápagos giant tortoise species, we find distinct structure that matches the relationships described by the traditional genetic markers. Furthermore, we confirm that accurate estimates of genetic differentiation in highly structured natural populations can be obtained using thousands of SNPs and 2-5 individuals, or hundreds of SNPs and 10 individuals, but only if the units of analysis are delineated in a way that is consistent with evolutionary history. We show that the lack of structure in the recent SNP-based study was likely due to unnatural grouping of individuals and erroneous genotype filtering. Our study demonstrates that genomic data enable patterns of genetic differentiation among populations to be elucidated even with few samples per population, and underscores the importance of sampling design. These results have specific implications for studies of population structure in endangered species and subsequent management decisions.

8.
Elife ; 52016 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-27797705

RESUMEN

Elephants have significantly reduced their risk of cancer by duplicating an important gene called TP53.


Asunto(s)
Elefantes , Neoplasias , Animales , Tamaño Corporal , Daño del ADN
9.
J R Soc Interface ; 11(93): 20130888, 2014 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-24451389

RESUMEN

Population connectivity and spatial distribution are fundamentally related to ecology, evolution and behaviour. Here, we combined powerful genetic analysis with simulations of particle dispersal in a high-resolution ocean circulation model to investigate the distribution of green turtles foraging at the remote Palmyra Atoll National Wildlife Refuge, central Pacific. We analysed mitochondrial sequences from turtles (n = 349) collected there over 5 years (2008-2012). Genetic analysis assigned natal origins almost exclusively (approx. 97%) to the West Central and South Central Pacific combined Regional Management Units. Further, our modelling results indicated that turtles could potentially drift from rookeries to Palmyra Atoll via surface currents along a near-Equatorial swathe traversing the Pacific. Comparing findings from genetics and modelling highlighted the complex impacts of ocean currents and behaviour on natal origins. Although the Palmyra feeding ground was highly differentiated genetically from others in the Indo-Pacific, there was no significant differentiation among years, sexes or stage-classes at the Refuge. Understanding the distribution of this foraging population advances knowledge of green turtles and contributes to effective conservation planning for this threatened species.


Asunto(s)
ADN Mitocondrial/genética , Modelos Genéticos , Filogenia , Tortugas/genética , Animales , Islas del Pacífico , Océano Pacífico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA