Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 152(4): 818-30, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23415229

RESUMEN

Nitric oxide (NO) is an important signaling molecule in multicellular organisms. Most animals produce NO from L-arginine via a family of dedicated enzymes known as NO synthases (NOSes). A rare exception is the roundworm Caenorhabditis elegans, which lacks its own NOS. However, in its natural environment, C. elegans feeds on Bacilli that possess functional NOS. Here, we demonstrate that bacterially derived NO enhances C. elegans longevity and stress resistance via a defined group of genes that function under the dual control of HSF-1 and DAF-16 transcription factors. Our work provides an example of interspecies signaling by a small molecule and illustrates the lifelong value of commensal bacteria to their host.


Asunto(s)
Bacillus subtilis , Caenorhabditis elegans/fisiología , Longevidad , Óxido Nítrico/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Dieta , Factores de Transcripción Forkhead , Tracto Gastrointestinal/microbiología , Temperatura , Factores de Transcripción/metabolismo
2.
Mol Phylogenet Evol ; 160: 107123, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33610647

RESUMEN

Some tropical plant families, such as the Sapotaceae, have a complex taxonomy, which can be resolved using Next Generation Sequencing (NGS). For most groups however, methodological protocols are still missing. Here we identified 531 monocopy genes and 227 Short Tandem Repeats (STR) markers and tested them on Sapotaceae using target capture and NGS. The probes were designed using two genome skimming samples from Capurodendron delphinense and Bemangidia lowryi, both from the Tseboneae tribe, as well as the published Manilkara zapota transcriptome from the Sapotoideae tribe. We combined our probes with 261 additional ones previously published and designed for the entire angiosperm group. On a total of 792 low-copy genes, 638 showed no signs of paralogy and were used to build a phylogeny of the family with 231 individuals from all main lineages. A highly supported topology was obtained at high taxonomic ranks but also at the species level. This phylogeny revealed the existence of more than 20 putative new species. Single nucleotide polymorphisms (SNPs) extracted from the 638 genes were able to distinguish lineages within a species complex and to highlight geographical structuration. STR were recovered efficiently for the species used as reference (C. delphinense) but the recovery rate decreased dramatically with the phylogenetic distance to the focal species. Altogether, the new loci will help reaching a sound taxonomic understanding of the family Sapotaceae for which many circumscriptions and relationships are still debated, at the species, genus and tribe levels.


Asunto(s)
Núcleo Celular/genética , Marcadores Genéticos , Filogenia , Sapotaceae/genética , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Nature ; 473(7346): 174-80, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21508958

RESUMEN

Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.


Asunto(s)
Bacterias/clasificación , Intestinos/microbiología , Metagenoma , Bacterias/genética , Técnicas de Tipificación Bacteriana , Biodiversidad , Biomarcadores/análisis , Europa (Continente) , Heces/microbiología , Femenino , Humanos , Masculino , Metagenómica , Filogenia
4.
Microbiology (Reading) ; 160(Pt 7): 1321-1331, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24722907

RESUMEN

Short-term adaptation to changing environments relies on regulatory elements translating shifting metabolite concentrations into a specifically optimized transcriptome. So far the focus of analyses has been divided between regulatory elements identified in vivo and kinetic studies of small molecules interacting with the regulatory elements in vitro. Here we describe how in vivo regulon kinetics can describe a regulon through the effects of the metabolite controlling it, exemplified by temporal purine exhaustion in Lactococcus lactis. We deduced a causal relation between the pathway precursor 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and individual mRNA levels, whereby unambiguous and homogeneous relations could be obtained for PurR regulated genes, thus linking a specific regulon to a specific metabolite. As PurR activates gene expression upon binding of PRPP, the pur mRNA curves reflect the in vivo kinetics of PurR PRPP binding and activation. The method singled out the xpt-pbuX operon as kinetically distinct, which was found to be caused by a guanine riboswitch whose regulation was overlaying the PurR regulation. Importantly, genes could be clustered according to regulatory mechanism and long-term consequences could be distinguished from transient changes--many of which would not be seen in a long-term adaptation to a new environment. The strategy outlined here can be adapted to analyse the individual effects of members from larger metabolomes in virtually any organism, for elucidating regulatory networks in vivo.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Lactococcus lactis/genética , Regulón/genética , Proteínas Represoras/genética , Transcriptoma , Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica , Cinética , Lactococcus lactis/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforribosil Pirofosfato/metabolismo , Purinas/metabolismo , Proteínas Represoras/metabolismo , Riboswitch , Activación Transcripcional
5.
Nature ; 433(7026): 627-9, 2005 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-15703746

RESUMEN

In tropical rainforests, 30-65% of tree species grow at densities of less than one individual per hectare. At these low population densities, successful cross-pollination relies on synchronous flowering. In rainforests with low climatic seasonality, photoperiodic control is the only reliable mechanism for inducing synchronous flowering. This poses a problem because there is no variation in day length at the Equator. Here we propose a new mechanism of photoperiodic timekeeping based on the perception of variation in sunrise or sunset time, which explains and predicts the annually repeated, staggered, synchronous and bimodal flowering of many tree species in Amazonian rainforests near the Equator.


Asunto(s)
Flores/fisiología , Geografía , Fotoperiodo , Colombia , Costa Rica , Flores/efectos de la radiación , Melastomataceae/fisiología , Melastomataceae/efectos de la radiación , Montanoa/fisiología , Montanoa/efectos de la radiación , Reproducción/fisiología , Reproducción/efectos de la radiación , Estaciones del Año , Luz Solar , Factores de Tiempo , Árboles/fisiología , Árboles/efectos de la radiación , Clima Tropical
6.
Plants (Basel) ; 10(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34451747

RESUMEN

Capurodendron is the largest endemic genus of plants from Madagascar, with around 76% of its species threatened by deforestation and illegal logging. However, some species are not well circumscribed and many of them remain undescribed, impeding a confident evaluation of their conservation status. Here we focus on taxa delimitation and conservation of two species complexes within Capurodendron: the Arid and Western complexes, each containing undescribed morphologies as well as intermediate specimens alongside well-delimited taxa. To solve these taxonomic issues, we studied 381 specimens morphologically and selected 85 of them to obtain intergenic, intronic, and exonic protein-coding sequences of 794 nuclear genes and 227 microsatellite loci. These data were used to test species limits and putative hybrid patterns using different approaches such as phylogenies, PCA, structure analyses, heterozygosity level, FST, and ABBA-BABA tests. The potential distributions were furthermore estimated for each inferred species. The results show that the Capurodendron Western Complex contains three well-delimited species, C. oblongifolium, C. perrieri, and C. pervillei, the first two hybridizing sporadically with the last and producing morphologies similar to, but genetically distinct from C. pervillei. The Arid Complex shows a more intricate situation, as it contains three species morphologically well-delimited but genetically intermixed. Capurodendron mikeorum nom. prov. is shown to be an undescribed species with a restricted distribution, while C. androyense and C. mandrarense have wider and mostly sympatric distributions. Each of the latter two species contains two major genetic pools, one showing interspecific admixture in areas where both taxa coexist, and the other being less admixed and comprising allopatric populations having fewer contacts with the other species. Only two specimens out of 172 showed clear genetic and morphological signals of recent hybridization, while all the others were morphologically well-delimited, independent of their degree of genetic admixture. Hybridization between Capurodendron androyense and C. microphyllum, the sister species of the Arid Complex, was additionally detected in areas where both species coexist, producing intermediate morphologies. Among the two complexes, species are well-defined morphologically with the exception of seven specimens (1.8%) displaying intermediate patterns and genetic signals compatible with a F1 hybridization. A provisional conservation assessment for each species is provided.

7.
Nat Commun ; 12(1): 4336, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267196

RESUMEN

Glutathione (GSH) is the most abundant cellular antioxidant. As reactive oxygen species (ROS) are widely believed to promote aging and age-related diseases, and antioxidants can neutralize ROS, it follows that GSH and its precursor, N-acetyl cysteine (NAC), are among the most popular dietary supplements. However, the long- term effects of GSH or NAC on healthy animals have not been thoroughly investigated. We employed C. elegans to demonstrate that chronic administration of GSH or NAC to young or aged animals perturbs global gene expression, inhibits skn-1-mediated transcription, and accelerates aging. In contrast, limiting the consumption of dietary thiols, including those naturally derived from the microbiota, extended lifespan. Pharmacological GSH restriction activates the unfolded protein response and increases proteotoxic stress resistance in worms and human cells. It is thus advantageous for healthy individuals to avoid excessive dietary antioxidants and, instead, rely on intrinsic GSH biosynthesis, which is fine-tuned to match the cellular redox status and to promote homeostatic ROS signaling.


Asunto(s)
Acetilcisteína/farmacología , Envejecimiento/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Glutatión/farmacología , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Suplementos Dietéticos , Escherichia coli , Femenino , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Humanos , Masculino , Paraquat/farmacología , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Factores de Transcripción/genética , Respuesta de Proteína Desplegada/fisiología
8.
BMC Bioinformatics ; 11 Suppl 12: S11, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21210978

RESUMEN

BACKGROUND: Computer languages can be domain-related, and in the case of multidisciplinary projects, knowledge of several languages will be needed in order to quickly implements ideas. Moreover, each computer language has relative strong points, making some languages better suited than others for a given task to be implemented. The Bioconductor project, based on the R language, has become a reference for the numerical processing and statistical analysis of data coming from high-throughput biological assays, providing a rich selection of methods and algorithms to the research community. At the same time, Python has matured as a rich and reliable language for the agile development of prototypes or final implementations, as well as for handling large data sets. RESULTS: The data structures and functions from Bioconductor can be exposed to Python as a regular library. This allows a fully transparent and native use of Bioconductor from Python, without one having to know the R language and with only a small community of translators required to know both. To demonstrate this, we have implemented such Python representations for key infrastructure packages in Bioconductor, letting a Python programmer handle annotation data, microarray data, and next-generation sequencing data. CONCLUSIONS: Bioconductor is now not solely reserved to R users. Building a Python application using Bioconductor functionality can be done just like if Bioconductor was a Python package. Moreover, similar principles can be applied to other languages and libraries. Our Python package is available at: http://pypi.python.org/pypi/rpy2-bioconductor-extensions/.


Asunto(s)
Biología Computacional , Ensayos Analíticos de Alto Rendimiento , Lenguajes de Programación , Programas Informáticos , Algoritmos , Bibliotecas Digitales , Interfaz Usuario-Computador
9.
Methods Mol Biol ; 1910: 747-766, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31278684

RESUMEN

Open-source software encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, open-source software comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor.In this chapter, we compare the three principal approaches for sharing software between different programming languages: by remote procedure call (RPC), by sharing a local "call stack," and by calling program to programs. RPC provides a language-independent protocol over a network interface; examples are SOAP and Rserve. The local call stack provides a between-language mapping, not over the network interface but directly in computer memory; examples are R bindings, RPy, and languages sharing the Java virtual machine stack. This functionality provides strategies for sharing of software between Bio* projects, which can be exploited more often.Here, we present cross-language examples for sequence translation and measure throughput of the different options. We compare calling into R through native R, RSOAP, Rserve, and RPy interfaces, with the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations and with call stack bindings to BioJava and the European Molecular Biology Open Software Suite (EMBOSS).In general, call stack approaches outperform native Bio* implementations, and these, in turn, outperform "RPC"-based approaches. To test and compare strategies, we provide a downloadable Docker container with all examples, tools, and libraries included.


Asunto(s)
Biología Computacional , Lenguajes de Programación , Programas Informáticos , Biología Computacional/métodos , Interfaz Usuario-Computador , Navegador Web
10.
Stem Cell Res ; 25: 6-17, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28988007

RESUMEN

Adult human bone marrow stromal cells (hBMSC) cultured for cell therapy require evaluation of potency and stability for safe use. Chromosomal aberrations upsetting genomic integrity in such cells have been contrastingly described as "Limited" or "Significant". Previously reported stepwise acquisition of a spontaneous neoplastic phenotype during three-year continuous culture of telomerized cells (hBMSC-TERT20) didn't alter a diploid karyotype measured by spectral karyotype analysis (SKY). Such screening may not adequately monitor abnormal and potentially tumorigenic hBMSC in clinical scenarios. We here used array comparative genomic hybridization (aCGH) to more stringently compare non-tumorigenic parental hBMSC-TERT strains with their tumorigenic subcloned populations. Confirmation of a known chromosome 9p21 microdeletion at locus CDKN2A/B, showed it also impinged upon the adjacent MTAP gene. Compared to reference diploid human fibroblast genomic DNA, the non-tumorigenic hBMSC-TERT4 cells had a copy number variation (CNV) in at least 14 independent loci. The pre-tumorigenic hBMSC-TERT20 cell strain had further CNV including 1q44 gain enhancing SMYD3 expression and 11q13.1 loss downregulating MUS81 expression. Bioinformatic analysis of gene products reflecting 11p15.5 CNV gain in tumorigenic hBMSC-TERT20 cells highlighted networks implicated in tumorigenic progression involving cell cycle control and mis-match repair. We provide novel biomarkers for prospective risk assessment of expanded stem cell cultures.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Proliferación Celular/genética , Proliferación Celular/fisiología , Hibridación Genómica Comparativa , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Humanos , Inmunohistoquímica , Cariotipo , Masculino , Persona de Mediana Edad , Estudios Prospectivos
11.
Sci Rep ; 7(1): 7137, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28769037

RESUMEN

Bacteria naturally form communities of cells known as biofilms. However the physiological roles of biofilms produced by non-pathogenic microbiota remain largely unknown. To assess the impact of a biofilm on host physiology we explored the effect of several non-pathogenic biofilm-forming bacteria on Caenorhabditis elegans. We show that biofilm formation by Bacillus subtilis, Lactobacillus rhamnosus and Pseudomonas fluorescens induces C. elegans stress resistance. Biofilm also protects against pathogenic infection and prolongs lifespan. Total mRNA analysis identified a set of host genes that are upregulated in response to biofilm formation by B. subtilis. We further demonstrate that mtl-1 is responsible for the biofilm-mediated increase in oxidative stress resistance and lifespan extension. Induction of mtl-1 and hsp-70 promotes biofilm-mediated thermotolerance. ilys-2 activity accounts for biofilm-mediated resistance to Pseudomonas aeruginosa killing. These results reveal the importance of non-pathogenic biofilms for host physiology and provide a framework to study commensal biofilms in higher organisms.


Asunto(s)
Biopelículas , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/fisiología , Longevidad , Estrés Fisiológico , Adaptación Biológica/genética , Alimentación Animal , Animales , Biomarcadores , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Interacciones Huésped-Patógeno , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Simbiosis
12.
Nat Commun ; 8: 15868, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28627510

RESUMEN

A high-sugar diet has been associated with reduced lifespan in organisms ranging from worms to mammals. However, the mechanisms underlying the harmful effects of glucose are poorly understood. Here we establish a causative relationship between endogenous glucose storage in the form of glycogen, resistance to oxidative stress and organismal aging in Caenorhabditis elegans. We find that glycogen accumulated on high dietary glucose limits C. elegans longevity. Glucose released from glycogen and used for NADPH/glutathione reduction renders nematodes and human hepatocytes more resistant against oxidative stress. Exposure to low levels of oxidants or genetic inhibition of glycogen synthase depletes glycogen stores and extends the lifespan of animals fed a high glucose diet in an AMPK-dependent manner. Moreover, glycogen interferes with low insulin signalling and accelerates aging of long-lived daf-2 worms fed a high glucose diet. Considering its extensive evolutionary conservation, our results suggest that glycogen metabolism might also have a role in mammalian aging.


Asunto(s)
Caenorhabditis elegans/fisiología , Glucosa/metabolismo , Glucógeno/metabolismo , Estrés Oxidativo/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Animales Modificados Genéticamente , Antioxidantes/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diamida/farmacología , Glucosa/farmacología , Glutatión/metabolismo , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Células Hep G2 , Humanos , Longevidad/fisiología , NADP/metabolismo , Oxidantes/farmacología , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
15.
Nat Microbiol ; 1(11): 16152, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27564131

RESUMEN

The human gastrointestinal (GI) tract is the habitat for hundreds of microbial species, of which many cannot be cultivated readily, presumably because of the dependencies between species1. Studies of microbial co-occurrence in the gut have indicated community substructures that may reflect functional and metabolic interactions between cohabiting species2,3. To move beyond species co-occurrence networks, we systematically identified transcriptional interactions between pairs of coexisting gut microbes using metagenomics and microarray-based metatranscriptomics data from 233 stool samples from Europeans. In 102 significantly interacting species pairs, the transcriptional changes led to a reduced expression of orthologous functions between the coexisting species. Specific species-species transcriptional interactions were enriched for functions important for H2 and CO2 homeostasis, butyrate biosynthesis, ATP-binding cassette (ABC) transporters, flagella assembly and bacterial chemotaxis, as well as for the metabolism of carbohydrates, amino acids and cofactors. The analysis gives the first insight into the microbial community-wide transcriptional interactions, and suggests that the regulation of gene expression plays an important role in species adaptation to coexistence and that niche segregation takes place at the transcriptional level.


Asunto(s)
Microbioma Gastrointestinal/genética , Perfilación de la Expresión Génica , Metagenoma , Interacciones Microbianas , Transportadoras de Casetes de Unión a ATP/genética , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/metabolismo , Butiratos/metabolismo , Dióxido de Carbono/metabolismo , Dinamarca , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Humanos , Redes y Vías Metabólicas/genética , Interacciones Microbianas/genética , Interacciones Microbianas/fisiología , España , Análisis de Sistemas
17.
BMC Bioinformatics ; 5: 111, 2004 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-15310390

RESUMEN

BACKGROUND: Short oligonucleotide arrays have several probes measuring the expression level of each target transcript. Therefore the selection of probes is a key component for the quality of measurements. However, once probes have been selected and synthesized on an array, it is still possible to re-evaluate the results using an updated mapping of probes to genes, taking into account the latest biological knowledge available. METHODS: We investigated how probes found on recent commercial microarrays for human genes (Affymetrix HG-U133A) were matching a recent curated collection of human transcripts: the NCBI RefSeq database. We also built mappings and used them in place of the original probe to genes associations provided by the manufacturer of the arrays. RESULTS: In a large number of cases, 36%, the probes matching a reference sequence were consistent with the grouping of probes by the manufacturer of the chips. For the remaining cases there were discrepancies and we show how that can affect the analysis of data. CONCLUSIONS: While the probes on Affymetrix arrays remain the same for several years, the biological knowledge concerning the genomic sequences evolves rapidly. Using up-to-date knowledge can apparently change the outcome of an analysis.


Asunto(s)
Sondas de ADN/genética , Sondas de ADN/normas , Perfilación de la Expresión Génica/normas , Genes/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Secuencia de Bases/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Estándares de Referencia , Programas Informáticos
18.
Front Genet ; 5: 362, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25520736

RESUMEN

Species diversity is unequally distributed across the globe, with the greatest concentration occurring in the tropics. Even within the tropics, there are significant differences in the numbers of taxa found in each continental region. Manilkara is a pantropical genus of trees in the Sapotaceae comprising c. 78 species. Its distribution allows for biogeographic investigation and testing of whether rates of diversification differ amongst tropical regions. The age and geographical origin of Manilkara are inferred to determine whether Gondwanan break-up, boreotropical migration or long distance dispersal have shaped its current disjunct distribution. Diversification rates through time are also analyzed to determine whether the timing and tempo of speciation on each continent coincides with geoclimatic events. Bayesian analyses of nuclear (ITS) and plastid (rpl32-trnL, rps16-trnK, and trnS-trnFM) sequences were used to reconstruct a species level phylogeny of Manilkara and related genera in the tribe Mimusopeae. Analyses of the nuclear data using a fossil-calibrated relaxed molecular clock indicate that Manilkara evolved 32-29 million years ago (Mya) in Africa. Lineages within the genus dispersed to the Neotropics 26-18 Mya and to Asia 28-15 Mya. Higher speciation rates are found in the Neotropical Manilkara clade than in either African or Asian clades. Dating of regional diversification correlates with known palaeoclimatic events. In South America, the divergence between Atlantic coastal forest and Amazonian clades coincides with the formation of drier Cerrado and Caatinga habitats between them. In Africa diversification coincides with Tertiary cycles of aridification and uplift of the east African plateaux. In Southeast Asia dispersal may have been limited by the relatively recent emergence of land in New Guinea and islands further east c. 10 Mya.

19.
J Med Microbiol ; 63(Pt 6): 788-795, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24713356

RESUMEN

The phage-shock protein (Psp) system is believed to manage membrane stress in all Enterobacteriaceae and has recently emerged as being important for virulence in several pathogenic species of this phylum. The core of the Psp system consists of the pspA-D operon and the distantly located pspG gene. In Salmonella enterica serovar Typhimurium (S. Typhimurium), it has recently been reported that PspA is essential for systemic infection of mice, but only in NRAMP1(+) mice, signifying that attenuation is related to coping with divalent cation starvation in the intracellular environment. In the present study, we investigated the contribution of individual psp genes to virulence of S. Typhimurium. Interestingly, deletion of the whole pspA-D set of genes caused attenuation in both NRAMP1(+) and NRAMP1(-) mice, indicating that one or more of the psp genes contribute to virulence independently of NRAMP1 expression in the host. Investigations of single gene mutants showed that knock out of pspB reduced virulence in both types of mice, while deletion of pspA only caused attenuation in NRAMP1(+) mice, and deletion of pspD had a minor effect in NRAMP1(-) mice, while deletions of either pspC or pspG did not affect virulence. Experiments addressed at elucidating the role of PspB in virulence revealed that PspB is dispensable for uptake to and intracellular replication in cultured macrophages and resistance to complement-induced killing. Furthermore, the Psp system of S. Typhimurium was dispensable during pIV-induced secretin stress. In conclusion, our results demonstrate that removal of PspB reduces virulence in S. Typhimurium independently of host NRAMP1 expression, demonstrating that PspB has roles in intra-host survival distinct from the reported contributions of PspA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de Choque Térmico/metabolismo , Salmonelosis Animal/microbiología , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Animales , Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/genética , Línea Celular , Clonación Molecular , Eliminación de Gen , Proteínas de Choque Térmico/genética , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Salmonella typhimurium/genética , Virulencia
20.
Nat Biotechnol ; 32(8): 822-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24997787

RESUMEN

Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples.


Asunto(s)
Metagenómica , Análisis por Conglomerados , Bases de Datos Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA