Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Org Chem ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720168

RESUMEN

Tracking carboxylesterases (CESs) through noninvasive and dynamic imaging is of great significance for diagnosing and treating CES-related metabolic diseases. Herein, three BODIPY-based fluorescent probes with a pyridine unit quaternarized via an acetoxybenzyl group were designed and synthesized to detect CESs based on the photoinduced electron transfer process. Notably, among these probes, BDPN2-CES exhibited a remarkable 182-fold fluorescence enhancement for CESs within 10 min. Moreover, BDPN2-CES successfully enabled real-time imaging of endogenous CES variations in living cells. Using BDPN2-CES, a visual high-throughput screening method for CES inhibitors was established, culminating in the discovery of an efficient inhibitor, WZU-13, sourced from a chemical library. These findings suggest that BDPN2-CES could provide a new avenue for diagnosing CES-related diseases, and WZU-13 emerges as a promising therapeutic candidate for CES-overexpression pathological processes.

2.
Chemistry ; 29(5): e202202909, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36326711

RESUMEN

Organic ultralong room-temperature phosphorescence (RTP) materials have attracted great attention for their wide applications in optoelectronic devices and bioimaging. However, the development of these materials remains a challenging task, partially due to the lack of rational molecular design strategies and unclear luminescence mechanisms. Herein, we present a method for facile access to structurally diverse substituted 1-aminoisoquinoline derivatives through a copper-catalyzed one-pot three-component coupling reaction that provides a promising approach to rapidly assemble a library of 1-aminoisoquinolines for exploring the regularity of the host-guest doped system. A series of host-guest RTP materials with wide-ranging lifetimes from 4.4 to 299.3 ms were constructed by doping various substituted isoquinolines derivatives into benzophenone (BP). Furthermore, 4 r/BP nanoparticles could be used for in-vivo imaging with a signal-to-noise ratio value as high as 32, revealing the potential of the isoquinoline framework for the construction of high-performance RTP materials.


Asunto(s)
Benzofenonas , Isoquinolinas , Temperatura
3.
Inorg Chem ; 62(49): 20314-20324, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37991983

RESUMEN

Functionalized crystalline solids based on metal-organic frameworks (MOFs) enable efficient luminescence detection and high proton conductivity, making them crucial in the realms of environmental monitoring and clean energy. Here, two structurally and functionally distinct zinc-based MOFs, [Zn(TTDPa)(bodca)]·H2O (1) and [Zn(TTDPb)(bodca)]·H2O (2), were successfully designed and synthesized using 3,6-di(pyridin-4-yl)thieno[3,2-b]thiophene (TTDPa) and 2,5-di(pyridin-4-yl)thieno[3,2-b]thiophene (TTDPb) as ligands, in the presence of bicyclo[2.2.2]octane-1,4-dicarboxylic acid (H2bodca). Both 1 and 2 display a three-dimensional (3D) structure with 5-fold interpenetration, and notably, 2 forms a larger one-dimensional pore measuring 17.16 × 10.81 Å2 in size. Fluorescence experiments demonstrate that 1 and 2 can function as luminescent sensors for nitrofurantoin (NFT) and nitrofurazone (NFZ) with low detection limits, remarkable selectivity, and good recyclability. A comprehensive analysis was conducted to investigate the differing sensing effects of compounds 1 and 2 and to explore potential sensing mechanisms. Additionally, at 328 K and 98% relative humidity, 1 and 2 exhibit proton conductivity values of 2.13 × 10-3 and 4.91 × 10-3 S cm-1, respectively, making them suitable proton-conducting materials. Hence, the integration of luminescent sensing and proton conductivity in monophasic 3D Zn-MOFs holds significant potential for application in intelligent multitasking devices.

4.
Anal Chem ; 94(36): 12383-12390, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36049122

RESUMEN

Tracking liver polarity with noninvasive and dynamic imaging techniques is helpful to better understand the non-alcoholic fatty liver (NAFL). Herein, a novel near-infrared (NIR) fluorescent probe Cy-Mp is constructed using a "symmetry collapse" strategy. The structure modification leads to the conversion of locally excited state fluorescence to charge transfer state fluorescence. Cy-Mp emits at near-infrared (NIR) wavelengths with high photostability as well as a large Stokes shift. Cy-Mp exhibits a ratiometric response to polarity, providing more accurate analysis of intracellular polarity via the built-in internal reference correction. Most importantly, the in vivo studies indicate that Cy-Mp can accumulate in the liver and the decreased polarity in the liver of mice with NAFL is verified by the ratiometric imaging, implying the great potential of Cy-Mp in the diagnosis of NAFL.


Asunto(s)
Hígado Graso , Colorantes Fluorescentes , Animales , Hígado Graso/diagnóstico por imagen , Colorantes Fluorescentes/química , Ratones , Espectrometría de Fluorescencia
5.
Inorg Chem ; 61(13): 5388-5396, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35319197

RESUMEN

A multifunctional metal-organic framework, (Hdmbpy)[Dy(H2dobdc)2(H2O)]·3H2O (Dy-MOF, H4dobdc = 2,5-dihydroxyterephthalic acid, dmbpy = 4,4'-dimethyl-2,2'-bipyridine), was synthesized and structurally characterized. The metal center DyIII is connected by four carboxyl groups to form the [Dy2(CO2)4] binuclear nodes, which are further interconnected by eight separate H2dobdc2- ligands to form a three-dimensional (3D) framework including hydrophilic triangular channels and abundant hydrogen-bonding networks. Dy-MOF has good stability in aqueous solution as well as in harsh acidic or alkaline solutions (pH range: 2.0-12.0). Furthermore, the luminescence signal of Dy-MOF undergoes a visualized color change as the acidity of the solution alters, which is the typical behavior of pH ratiometric probe. At a 100% relative humidity, Dy-MOF exhibits a high proton conductivity σ (1.70 × 10-4 S cm-1 at 303 K; 1.20 × 10-3 S cm-1 at 343 K) based on the proton hopping mechanism, which can be classified as a superionic conductor with σ exceeding 10-4 S cm-1. Additionally, the ferromagnetic interaction and magnetic relaxation behavior are simultaneously achieved in Dy-MOF. Herein, the combination of luminescence sensing, magnetism, and proton conduction in a single-phase 3D MOF may offer great potential applications in smart multitasking devices.

6.
Chemistry ; 27(2): 622-627, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33191540

RESUMEN

Using the redox-active tetrathiafulvalene tetrabenzoate (TTFTB4- ) as the linker, a series of stable and porous rare-earth metal-organic frameworks (RE-MOFs), [RE9 (µ3 -OH)13 (µ3 -O)(H2 O)9 (TTFTB)3 ] (1-RE, where RE=Y, Sm, Gd, Tb, Dy, Ho, and Er) were constructed. The RE9 (µ3 -OH)13 (µ3 -O) (H2 O)9 ](CO2 )12 clusters within 1-RE act as segregated single-molecule magnets (SMMs) displaying slow relaxation. Interestingly, upon oxidation by I2 , the S=0 TTFTB4- linkers of 1-RE were converted into S= 1 / 2 TTFTB.3- radical linkers which introduced exchange-coupling between SMMs and modulated the relaxation. Furthermore, the SMM property can be restored by reduction in N,N-dimethylformamide. These results highlight the advantage of MOFs in the construction of redox-switchable SMMs.

7.
Inorg Chem ; 58(14): 9387-9396, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31240922

RESUMEN

Three heterometallic dinuclear compounds, [MIIDyIII(L)(Pc)(ROH)]·ROH (R = CH3, M = Ni (1), Zn (2); R = C2H5, M = Zn (3)), were stepwise synthesized based on phthalocyanine (H2Pc) and one tripodal Schiff-base ligand 1,1,1-tris[(salicylideneamino)methyl]ethane (H3L). All of them have been studied structurally and magnetically. The six-coordinate MII ion and the seven-coordinate DyIII ion are bridged by two phenolic oxygen atoms to form an MII-LnIII heterodinuclear unit. Magnetic measurements indicate that the ferromagnetic NiII-DyIII interaction is operative in compound 1 and all three compounds exhibit the field-induced slow relaxation of magnetizations. In particular, compounds 2 and 3 have the improved magnetic performance. Ab initio calculations indicate that the weak NiII-DyIII interaction decreases the energy barrier, while the replacement of the paramagnetic NiII ion by the diamagnetic ZnII in compound 2 and 3 not only controls the magnetic interaction but also alters the local magnetic axes of DyIII ions to optimize the magnetic relaxation behavior.

8.
Angew Chem Int Ed Engl ; 58(26): 8789-8793, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31033109

RESUMEN

A composite material, {[Fe(L)(TPPE)0.5 ]⋅3 CH3 OH}n , has been constructed by integrating the spin-crossover (SCO) subunit FeII {diethyl(E,E)-2,2'-[1,2-phenyl-bis(iminomethylidyne)]bis(3-oxobutanoate)-(2-)-N,N',O3 ,O3 '} and the highly luminescent connector 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)-ethene. Its structure contains four staggered 4×4 layers and intercalated methanol. The packing is dominated by considerable H-bonds either between adjacent layers and between layers and guests. A crystal-structure transformation was detected upon removal of the guest molecules. The SCO transition of the solvated crystals is centered at ca. 215 K with a non-symmetrical hysteresis of 25 K wide, and the desolvated [Fe(L)(TPPE)0.5 ]n exhibits gradual SCO without hysteresis. Intriguingly, the intensity of the fluorescence at 460 nm for the latter is maximized at the SCO transition. The energy transfer between luminescent and SCO entities is achievable as confirmed by theoretical calculations.

9.
Inorg Chem ; 57(3): 1408-1416, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29314838

RESUMEN

A new type of dinuclear dysprosium(III) complex based on phthalocyanine and salicylaldehyde derivatives (HL-R), [Dy2(Pc)2(L-R)2(H2O)]·2THF (R = OCH3 (1), OC2H5 (2); H2Pc = phthalocyanine; HL-OCH3 = 2-hydroxy-3-methoxybenzaldehyde; HL-OC2H5 = 3-ethoxy-2-hydroxybenzaldehyde), was successfully synthesized and structurally characterized. Complex 1 features a sandwich-type triple-decker structure, where two coplanar L-OCH3 ligands lie in the middle layer shared by two eight-coordinated DyIII ions and two Pc ligands are located in the outer layer. In 2, the introduction of an ethoxy group generates a noncoordination mode for the Oalkoxy atom. Magnetic studies indicate that complex 1 behaves as a zero-field single-molecule magnet with a higher energy barrier, while 2 exhibits a fast tunneling relaxation process. Theoretical calculations revealed that changes in the ligand field environment around DyIII ions can significantly affect the arrangement of the main magnetic axes and further result in distinct magnetic interactions as well as different relaxation behaviors.

10.
Phys Chem Chem Phys ; 20(25): 17245-17252, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29901060

RESUMEN

We report a strategy to enhance the room temperature low-field magnetoresistance (LFMR) behavior of Fe3O4 nanoparticle (NP) assemblies by controlled Zn-substitution. The Zn-substituted 7 nm ZnxFe3-xO4, (x = 0 to 0.4) NPs are prepared by thermal decomposition of metal acetylacetonates (M(acac)n, M = Fe2+, Fe3+, and Zn2+). The substitution increases NP magnetic susceptibility (χ) and makes the magnetic moment more sensitive to low magnetic fields. As a result, the Zn0.3Fe2.7O4 NP assembly with NPs separated by tridecanoate exhibits a large magnetoresistance (MR) ratio of -14.8% at 300 K under a 4.5 kOe magnetic field. The demonstrated approach to control NP substitution to enhance low-field magnetoresistance of the NP assemblies provides an attractive new strategy to fabricate Fe3O4-based magnetic NP assemblies with desirable transport properties for sensitive spintronic applications.

11.
Inorg Chem ; 56(14): 7835-7841, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28648057

RESUMEN

Magneto-structural correlations in a series of lanthanide polyoxometalates (POMs) with pentagonal bipyramidal symmetry, namely, [Ln2(NMP)12(PW12O40)][PW12O40] (NMP is N-methyl pyrrolidone), were studied in detail experimentally combined with theoretical calculations. Furthermore, two types of Dy-based complexes with pentagonal bipyramidal symmetry were built to discuss the dependence of the theoretical energy barriers with the axial Dy-O bond lengths when the magnetic axes in ground Kramers doublet are along the axial orientation or on the equatorial plane. A meaningful conclusion was put forward for designing such Dy-based SIMs with high performance.

12.
Inorg Chem ; 56(1): 336-343, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27977169

RESUMEN

[Er2(thd)4Pc]·2C6H6 (1) (Hthd = 2,2,6,6-tetramethylheptanedione), obtained as green crystals from the reaction of [Er(thd)3]·2H2O with lithium phthalocyanine, Li2Pc, is a stable dinuclear complex with two ErIII centers. Its lattice benzene solvent can be exchanged by soaking the crystals in dichloromethane to give [Er2(thd)4Pc]·2CH2Cl2 (2). The magnetic susceptibility data suggest different coupling interactions for the two complexes. While 1 exhibits fast relaxation and an estimated energy barrier of Ea = 2.6 cm-1 under 600 Oe dc field, the single-molecule magnet behavior of 2 is field-induced and the energy barrier is higher at 34.3 cm-1. Ab initio calculations were performed to understand the nature of the coupling interaction between two ErIII ions bridged by the phthalocyanine and the origin of different magnetic behavior. Importantly, the single-molecule magnetic properties can be reversibly tuned through the exchange of solvent molecules, confirmed by further measurements on the reverse solvated complexes 1-re and 2-re. This subtle control of relaxation by lattice solvents is rarely observed in single-molecule magnets, especially for ErIII-based complexes.

13.
Angew Chem Int Ed Engl ; 56(20): 5465-5470, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28402592

RESUMEN

A major challenge is the development of multifunctional metal-organic frameworks (MOFs), wherein magnetic and electronic functionality can be controlled simultaneously. Herein, we rationally construct two 3D MOFs by introducing the redox active ligand tetra(4-pyridyl)tetrathiafulvalene (TTF(py)4 ) and spin-crossover FeII centers. The materials exhibit redox activity, in addition to thermally and photo-induced spin crossover (SCO). A crystal-to-crystal transformation induced by I2 doping has also been observed and the resulting intercalated structure determined. The conductivity could be significantly enhanced (up to 3 orders of magnitude) by modulating the electronic state of the framework via oxidative doping; SCO behavior was also modified and the photo-magnetic behavior was switched off. This work provides a new strategy to tune the spin state and conductivity of framework materials through guest-induced redox-state switching.

14.
Acta Crystallogr C ; 69(Pt 11): 1362-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24192190

RESUMEN

µ-1,2-Bis(pyridin-3-yloxy)ethane-κ(2)N:N'-bis[aqua(pyridine-2,6-dicarboxylato-κ(3)O(2),N,O(6))copper(II)] tetrahydrate, [Cu2(C7H3NO4)2(C12H12N2O2)(H2O)2]·4H2O, (I), is a C-shaped molecule based on 1,2-bis(pyridin-3-yloxy)ethane (L) and Cu(II) in the presence of pyridine-2,6-dicarboxylic acid (H2pydc). The two five-coordinated Cu(II) centres are chelated by terminal pydc(2-) ligands and bridged by an L spacer. The molecules are arranged in a two-dimensional sheet via 15 O-H...O hydrogen bonds, and C-H...O interactions further bridge neighbouring sheets into a three-dimensional supermolecular architecture. The structure includes a well-resolved cyclic water tetramer, which acts as a subunit to form a larger aggregate. A thermogravimetric analysis of complex (I) was also carried out.

15.
J Colloid Interface Sci ; 634: 642-650, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549212

RESUMEN

The green synthesis process of photocatalytic ammonia production has received more and more attentions. Herein, a Z-scheme heterojunction with all-solid-state structures is constructed, in which carbon dots can act as electron transferring mediators. The photocatalytic measurement shows that the modified photocatalysts exhibit much higher activities, in which the ammonia production rates can reach above 232 µmol·gcal-1·h-1 under the light irradiation. The improved catalytic properties can be credited to the significantly increased number of photoinduced oxygen vacancies, the excellent visible-light adsorption abilities and photogenerated electron-hole separation efficiencies for the carbon dots bridged heterostructures. More hydroxyl and superoxide radicals can be simultaneously produced in the composites. This work provides reasonable guidance for applications in photocatalytic ammonia synthesis and a promising construction strategy of efficient Z-scheme photocatalysts.

16.
J Colloid Interface Sci ; 642: 470-478, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023518

RESUMEN

Environmentally friendly photocatalytic N2 fixation process has attracted considerable attention. Developing efficient photocatalysts with high electron-hole separation rates and gas adsorption capacities remains quite challenging. Herein, a facile fabrication strategy of Cu-Cu2O and multicomponent hydroxide S-scheme heterojunctions with carbon dot charge mediators is reported. The rational heterostructurebrings excellent N2 absorption ability and high photoinduced electron/hole separation efficiency, and the ammonia produced yield reach above 210 µmol·gcal-1·h-1 during the nitrogen photofixation process. More superoxide and hydroxyl radicals are generated simultaneously in the as-prepared samples under light illumination. This work offers a reasonable construction method to further develop suitable photocatalysts for ammonia synthesis.

17.
Chem Commun (Camb) ; 59(94): 14025-14028, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37947054

RESUMEN

Two novel near-infrared (NIR) fluorescent probes Cy-Vis1 and Cy-Vis2 with large Stokes shifts (>100 nm) were constructed using a "symmetry collapse" strategy. Notably, Cy-Vis2 was significantly more sensitive to viscosity than Cy-Vis1 through an enhanced intramolecular interaction strategy. The fluorescence intensities of Cy-Vis1 and Cy-Vis2 exhibited increases, by 7.6- and 19.9-fold, respectively, across the viscosity range from 0.8 cp to 359.9 cp. Cy-Vis2 was successfully used to visualize viscosity abnormalities in lipopolysaccharide (LPS)-induced inflammatory and NASH model mice.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Viscosidad , Colorantes Fluorescentes , Microscopía Fluorescente/métodos , Imagen Óptica/métodos
18.
Front Chem ; 10: 1021358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199666

RESUMEN

Four homodinuclear lanthanide complexes, Dy2 (LOEt)2(OAc)4 (1), Tb2 (LOEt)2(OAc)4 (2), Ho2(LOEt)2(OAc)4 (3), and Gd2 (LOEt)2(OAc)4 (4), have been synthesized and characterized based on a tripodal oxygen ligand Na [(η5-C5H5)Co(P(O)(OC2H5)2)3] (NaLOEt). Structural analyses show that the acetate anions bridge two symmetry-related Ln3+ ions in the µ2:η1:η1 and µ2:η1:η2 coordination patterns, and each lanthanide (III) ion owns a twisted square antiprism (SAPR) conformation. Static magnetic measurements reveal the weak intramolecular ferromagnetic interaction between dysprosium (III) ions in 1 and antiferromagnetic Ln3+···Ln3+ couplings in the other three complexes. Through the analysis of the ligand-field effect and magnetic anisotropy axis orientation, the reasons for the lack of dynamic magnetic behavior in 1 were identified.

19.
Front Chem ; 10: 974914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003620

RESUMEN

A new dysprosium (III) coordination polymer [Dy(Hm-dobdc) (H2O)2]·H2O (Dy-CP), was hydrothermal synthesized based on 4,6-dioxido-1,3-benzenedicarboxylate (H4m-dobdc) ligand containing carboxyl and phenolic hydroxyl groups. The Dy(III) center adopts an octa-coordinated [DyO8] geometry, which can be described as a twisted square antiprism (D 4d symmetry). Neighboring Dy(III) ions are interconnected by deprotonated Hm-dobdc3- ligand to form the two-dimensional infinite layers, which are further linked to generate three-dimensional structure through abundant hydrogen bonds mediated primarily by coordinated and lattice H2O molecules. Magnetic studies demonstrates that Dy-CP shows the field-induced slow relaxation of magnetization and the energy barrier U eff/k B and relaxation time τ 0 are 35.3 K and 1.31 × 10-6 s, respectively. Following the vehicular mechanism, Dy-CP displays proton conductivity with σ equal to 7.77 × 10-8 S cm-1 at 353 K and 30%RH. Moreover, luminescence spectra reveal that H4m-dobdc can sensitize characteristic luminescence of Dy(III) ion. Herein, good magnetism, proton conduction, and luminescence are simultaneously achieved, and thus, Dy-CP is a potential multifunctional coordination polymer material.

20.
Org Lett ; 24(28): 5090-5094, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35830465

RESUMEN

We herein report an unprecedented pathway to access γ-lactams using acetonitrile analogues as coupling partners without oxidants, ligands, and Lewis acids. The reaction undergoes Rh-catalyzed C(sp2)-H addition to carbon-bound nitriles with the aid of an amide traceless auxiliary followed by an annulation sequence, featuring a broad substrate scope, good functional group tolerance, and excellent chemo/stereoselectivity. Scale-up reactions and late-stage derivatizations highlight the potential synthetic utility of this methodology. A plausible mechanism is proposed based on mechanistic investigations.


Asunto(s)
Lactamas , Rodio , Catálisis , Estructura Molecular , Nitrilos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA