Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
2.
Phys Rev Lett ; 126(2): 027402, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512233

RESUMEN

We perform femtosecond pump-probe spectroscopy to in situ investigate the ultrafast photocarrier dynamics in bilayer graphene and observe an acceleration of energy relaxation under pressure. In combination with in situ Raman spectroscopy and ab initio molecular dynamics simulations, we reveal that interlayer shear and breathing modes have significant contributions to the faster hot-carrier relaxations by coupling with the in-plane vibration modes under pressure. Our work suggests that further understanding the effect of interlayer interaction on the behaviors of electrons and phonons would be critical to tailor the photocarrier dynamic properties of bilayer graphene.

3.
Phys Chem Chem Phys ; 23(26): 14195-14204, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34159999

RESUMEN

The two-dimensional counterpart of diamond, diamane, has attracted increasing interest due to its potentially distinctive properties. In this paper, diamanes anchored with different anion groups have been systematically studied with density functional theory (DFT) for the first time. Among them 12 conformers are confirmed to be stable and present direct semiconductor features with bandgaps ranging from 2.527 eV to 4.153 eV, and the in-plane stiffness is larger than that of graphene. Moreover, the electron carrier mobility of chair2-F is exceptionally high at 16546.713 cm2 V-1 s-1 along the y-direction, which is remarkably larger than that of diamond; and N-, B-doped boat2-H can be doped to have n-, p-type conductivity with a moderate activation energy of 0.34 and 0.37 eV, respectively. This work suggests that functionalized diamanes are promising for electronic devices and engineering materials.

4.
ACS Nano ; 17(7): 6811-6821, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36943144

RESUMEN

The oxygen evolution reaction (OER) is a critical step for sustainable fuel production through electrochemistry process. Maximizing active sites of nanocatalyst with enhanced intrinsic activity, especially the activation of lattice oxygen, is gradually recognized as the primary incentive. Since the surface reconfiguration to oxyhydroxide is unavoidable for oxygen-activated transition metal oxides, developing a surface termination like oxyhydroxide in oxides is highly desirable. In this work, we demonstrate an unusual surface termination of (111)-facet Co3O4 nanosheet that is exclusively containing edge-sharing octahedral Co3+ similar to CoOOH that can perform at approximately 40 times higher current density at 1.63 V (vs RHE) than commercial RuO2. It is found that this surface termination has an oxidized oxygen state in contrast to standard Co-O systems, which can serve as active site independently, breaking the scaling relationship limit. This work forwards the applications of oxide electrocatalysts in the energy conversion field by surface termination engineering.

5.
Nanoscale ; 13(20): 9264-9269, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33982743

RESUMEN

Recent experiments on magic-angle twisted bi-layer graphene have attracted intensive attention due to exotic properties such as unconventional superconductivity and correlated insulation. These phenomena were often found at a magic angle less than 1.1°. However, the preparation of precisely controlled bi-layer graphene with a small magic angle is challenging. In this work, electronic properties of large-angle twisted bi-layer graphene (TBG) under pressure are investigated with density functional theory. We demonstrate that large-angle TBG can display flat bands nearby the Fermi level under pressure, which may also induce interesting properties such as superconductivity which have only been found in small-angle TBG at ambient pressure. The Fermi velocity is found to decrease monotonously with pressure for large twisted angles, e.g., 21.8°. Our work indicates that applying pressure provides opportunities for flat-band engineering in larger angle TBG and supports further exploration in related investigations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA