RESUMEN
Inflammation is an important pathophysiological process in many diseases; it has beneficial and harmful effects. When exposed to various stimuli, the body triggers an inflammatory response to eliminate invaded pathogens and damaged tissues to maintain homeostasis. However, uncontrollable persistent or excessive inflammatory responses may damage tissues and induce various diseases, such as metabolic diseases (e.g. diabetes), autoimmune diseases, nervous system-related diseases, digestive system-related diseases, and even tumours. Aldo-keto reductase 1B10 (AKR1B10) is an important player in the development and progression of multiple diseases, such as tumours and inflammatory diseases. AKR1B10 is upregulated in solid tumours, such as hepatocellular carcinoma (HCC), non-small cell lung carcinoma, and breast cancer, and is a reliable serum marker. However, information on the role of AKR1B10 in inflammation is limited. In this study, we summarized the role of AKR1B10 in inflammatory diseases, including its expression, functional contribution to inflammatory responses, and regulation of signalling pathways related to inflammation. We also discussed the role of AKR1B10 in glucose and lipid metabolism and oxidative stress. This study provides novel information and increases the understanding of clinical inflammatory diseases.
Asunto(s)
Aldo-Ceto Reductasas , Inflamación , Humanos , Inflamación/inmunología , Aldo-Ceto Reductasas/metabolismo , Animales , Estrés Oxidativo , Transducción de Señal , Metabolismo de los Lípidos , Glucosa/metabolismoRESUMEN
BACKGROUND: Cardiovascular disease (CVD) is the leading cause of death. Oxidative stress is an important pathological process of a variety of CVDs. Xinshuaining preparation has a therapeutic effect on the heart failure. However, the anti-oxidative stress role of Xinshuaining preparation in H9c2 cells is still unclear. METHODS: The medicated serum of Xinshuaining preparation was acquired and utilized to hatch with H2O2-induced H9c2 cells. Main components in the Xinshuaining preparation were analyzed by liquid chromatography-mass spectrometry (LC/MS). The effect of medicated serum on the cell viability, apoptosis rate, the oxidative stress indicators (SOD, GSH-Px, and MDA), mitochondrial membrane potential (MMP), and ROS level was evaluated by CCK-8, flow cytometry, commercial biochemical detection kits, and JC-1 staining. Additionally, the associated mechanism was determined by the detection of the protein levels (PI3K, phosphorylated PI3K, Akt, phosphorylated Akt, and Nrf-2) through western blot assays, which was also further assessed with the application of LY294002. RESULTS: The medicated serum of Xinshuaining preparation notably increased the H2O2-reduced, the cell viability, the concentration of SOD and GSH-Px, MMP level and the relative protein expression level of phosphorylated PI3K and Akt and Nrf-2, while dampened the H2O2-elevated the level of the cell apoptosis rate, MDA, and ROS. However, Xinshuaining preparation on the cell viability, apoptosis, and oxidative stress was notably antagonized by LY294002 pre-treatment. CONCLUSIONS: The medicated serum of Xinshuaining preparation increased the cell viability and suppressed apoptosis and oxidative stress via the PI3K/Akt/Nrf-2 signaling pathway.
Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Peróxido de Hidrógeno/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Estrés Oxidativo , Apoptosis , Superóxido Dismutasa/metabolismoRESUMEN
OBJECTIVE: To ensure the supply of prevention materials in the tertiary public hospitals in prefecturelevel cities, and to make the process of allocating prevention materials more scientific and reasonable. METHODS: Open the green passage, simplify the procurement process, carry out emergency procurement of related materials, ensure timely delivery of prevention materials, distribute them at different levels, and strengthen the warehouse management of prevention materials. RESULTS: The scheme of emergancy supplies was constantly improved, and the supply of prevention materials was completed with good quality. CONCLUSIONS: Using scientific and efficient management methods, the supply of prevention materials in medical institutions has been guaranteed, which has experience and reference significance for the prevention and control of similar public health emergencies in the future.
Asunto(s)
Urgencias Médicas , Salud Pública , Humanos , Centros de Atención TerciariaRESUMEN
Chemotherapy remains a prevalent treatment for a wide range of tumors; however, the majority of patients undergoing conventional chemotherapy experience varying levels of chemoresistance, ultimately leading to suboptimal outcomes. The present article provided an indepth review of chemotherapy resistance in tumors, emphasizing the underlying factors contributing to this resistance in tumor cells. It also explored recent advancements in the identification of key molecules and molecular mechanisms within the primary chemoresistant pathways.
Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacosRESUMEN
Long noncoding RNAs (lncRNAs) refer to a class of RNAs greater than 200 nucleotides in length, most of which are considered unable to encode proteins, thus deemed to be junk genes formerly. But with emerging studies about lncRNAs coming out in recent years, it is much more clearly depicted that they can regulate gene expression at different levels, with various mechanisms, thus participating in diverse biological or pathological processes, including complicated tumor-associated pathways. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, the third leading cause of cancer-related mortality worldwide, which has been found to tightly associate with aberrant expression of a variety of lncRNAs regulating tumor proliferation, invasion, drug resistance, and so on, making it a potential novel tumor marker and therapeutic target. In this review, we highlight a few lncRNAs that are closely related to the occurrence and progression of HCC and try to cover their multifarious roles from different layers.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica/genéticaRESUMEN
Two-dimensional (2D) materials are promising candidates for future electronics due to their excellent electrical and photonic properties. Although promising results on the wafer-scale synthesis (≤150 mm diameter) of monolayer molybdenum disulfide (MoS2) have already been reported, the high-quality synthesis of 2D materials on wafers of 200 mm or larger, which are typically used in commercial silicon foundries, remains difficult. The back-end-of-line (BEOL) integration of directly grown 2D materials on silicon complementary metal-oxide-semiconductor (CMOS) circuits is also unavailable due to the high thermal budget required, which far exceeds the limits of silicon BEOL integration (<400 °C). This high temperature forces the use of challenging transfer processes, which tend to introduce defects and contamination to both the 2D materials and the BEOL circuits. Here we report a low-thermal-budget synthesis method (growth temperature < 300 °C, growth time ≤ 60 min) for monolayer MoS2 films, which enables the 2D material to be synthesized at a temperature below the precursor decomposition temperature and grown directly on silicon CMOS circuits without requiring any transfer process. We designed a metal-organic chemical vapour deposition reactor to separate the low-temperature growth region from the high-temperature chalcogenide-precursor-decomposition region. We obtain monolayer MoS2 with electrical uniformity on 200 mm wafers, as well as a high material quality with an electron mobility of ~35.9 cm2 V-1 s-1. Finally, we demonstrate a silicon-CMOS-compatible BEOL fabrication process flow for MoS2 transistors; the performance of these silicon devices shows negligible degradation (current variation < 0.5%, threshold voltage shift < 20 mV). We believe that this is an important step towards monolithic 3D integration for future electronics.