Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 169(3): 483-496.e13, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28413068

RESUMEN

Adult tissue stem cells (SCs) reside in niches, which, through intercellular contacts and signaling, influence SC behavior. Once activated, SCs typically give rise to short-lived transit-amplifying cells (TACs), which then progress to differentiate into their lineages. Here, using single-cell RNA-seq, we unearth unexpected heterogeneity among SCs and TACs of hair follicles. We trace the roots of this heterogeneity to micro-niches along epithelial-mesenchymal interfaces, where progenitors display molecular signatures reflective of spatially distinct local signals and intercellular interactions. Using lineage tracing, temporal single-cell analyses, and chromatin landscaping, we show that SC plasticity becomes restricted in a sequentially and spatially choreographed program, culminating in seven spatially arranged unilineage progenitors within TACs of mature follicles. By compartmentalizing SCs into micro-niches, tissues gain precise control over morphogenesis and regeneration: some progenitors specify lineages immediately, whereas others retain potency, preserving self-renewing features established early while progressively restricting lineages as they experience dynamic changes in microenvironment.


Asunto(s)
Células Madre Adultas/citología , Linaje de la Célula , Folículo Piloso/citología , Nicho de Células Madre , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Vía de Señalización Wnt
2.
Cell ; 169(4): 636-650.e14, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28434617

RESUMEN

Tissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds.


Asunto(s)
Carcinoma de Células Escamosas/patología , Linaje de la Célula , Células Epidérmicas , Folículo Piloso/citología , Neoplasias Cutáneas/patología , Piel/citología , Células Madre/metabolismo , Animales , Línea Celular Tumoral , Cromatina/metabolismo , Epidermis/metabolismo , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Cutáneas/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Trasplante Heterólogo , Cicatrización de Heridas
3.
Genes Dev ; 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008138

RESUMEN

Stem cells are fundamental units of tissue remodeling whose functions are dictated by lineage-specific transcription factors. Home to epidermal stem cells and their upward-stratifying progenies, skin relies on its secretory functions to form the outermost protective barrier, of which a transcriptional orchestrator has been elusive. KLF5 is a Krüppel-like transcription factor broadly involved in development and regeneration whose lineage specificity, if any, remains unclear. Here we report KLF5 specifically marks the epidermis, and its deletion leads to skin barrier dysfunction in vivo. Lipid envelopes and secretory lamellar bodies are defective in KLF5-deficient skin, accompanied by preferential loss of complex sphingolipids. KLF5 binds to and transcriptionally regulates genes encoding rate-limiting sphingolipid metabolism enzymes. Remarkably, skin barrier defects elicited by KLF5 ablation can be rescued by dietary interventions. Finally, we found that KLF5 is widely suppressed in human diseases with disrupted epidermal secretion, and its regulation of sphingolipid metabolism is conserved in human skin. Altogether, we established KLF5 as a disease-relevant transcription factor governing sphingolipid metabolism and barrier function in the skin, likely representing a long-sought secretory lineage-defining factor across tissue types.

4.
EMBO J ; 41(7): e109470, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35212000

RESUMEN

Skin wound repair is essential for organismal survival and failure of which leads to non-healing wounds, a leading health issue worldwide. However, mechanistic understanding of chronic wounds remains a major challenge due to lack of appropriate genetic mouse models. αSMA+ myofibroblasts, a unique class of dermal fibroblasts, are associated with cutaneous wound healing but their precise function remains unknown. We demonstrate that genetic depletion of αSMA+ myofibroblasts leads to pleiotropic wound healing defects, including lack of reepithelialization and granulation, dampened angiogenesis, and heightened hypoxia, hallmarks of chronic non-healing wounds. Other wound-associated FAP+ and FSP1+ fibroblasts do not exhibit such dominant functions. While type I collagen (COL1) expressing cells play a role in the repair process, COL1 produced by αSMA+ myofibroblasts is surprisingly dispensable for wound repair. In contrast, we show that ß1 integrin from αSMA+ myofibroblasts, but not TGFßRII, is essential for wound healing, facilitating contractility, reepithelization, and vascularization. Collectively, our study provides evidence for the functions of myofibroblasts in ß1 integrin-mediated wound repair with potential implications for treating chronic non-healing wounds.


Asunto(s)
Colágeno Tipo I , Miofibroblastos , Cicatrización de Heridas , Animales , Colágeno Tipo I/genética , Fibroblastos , Integrina beta1/genética , Ratones , Piel
5.
Nature ; 569(7757): 497-502, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31092920

RESUMEN

Cell competition-the sensing and elimination of less fit 'loser' cells by neighbouring 'winner' cells-was first described in Drosophila. Although cell competition has been proposed as a selection mechanism to optimize tissue and organ development, its evolutionary generality remains unclear. Here, by using live imaging, lineage tracing, single-cell transcriptomics and genetics, we identify two cell competition mechanisms that sequentially shape and maintain the architecture of stratified tissue during skin development in mice. In the single-layered epithelium of the early embryonic epidermis, winner progenitors kill and subsequently clear neighbouring loser cells by engulfment. Later, as the tissue begins to stratify, the basal layer instead expels losers through upward flux of differentiating progeny. This cell competition switch is physiologically relevant: when it is perturbed, so too is barrier formation. Our findings show that cell competition is a selective force that optimizes vertebrate tissue function, and illuminate how a tissue dynamically adjusts cell competition strategies to preserve fitness as its architectural complexity increases during morphogenesis.


Asunto(s)
Comunicación Celular , Células Epidérmicas/citología , Epidermis/embriología , Morfogénesis , Animales , Apoptosis , Células Clonales/citología , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Células Epidérmicas/metabolismo , Femenino , Masculino , Ratones , Fagocitosis , RNA-Seq , Análisis de la Célula Individual
6.
Nat Rev Genet ; 19(5): 311-325, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29479084

RESUMEN

Stem cells (SCs) govern tissue homeostasis and wound repair. They reside within niches, the special microenvironments within tissues that control SC lineage outputs. Upon injury or stress, new signals emanating from damaged tissue can divert nearby cells into adopting behaviours that are not part of their homeostatic repertoire. This behaviour, known as SC plasticity, typically resolves as wounds heal. However, in cancer, it can endure. Recent studies have yielded insights into the orchestrators of maintenance and lineage commitment for SCs belonging to three mammalian tissues: the haematopoietic system, the skin epithelium and the intestinal epithelium. We delineate the multifactorial determinants and general principles underlying the remarkable facets of SC plasticity, which lend promise for regenerative medicine and cancer therapeutics.


Asunto(s)
Plasticidad de la Célula , Neoplasias/metabolismo , Células Madre/metabolismo , Microambiente Tumoral , Cicatrización de Heridas , Animales , Humanos , Neoplasias/patología , Neoplasias/terapia , Células Madre/patología
7.
Technol Cult ; 65(1): 143-175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38661797

RESUMEN

Archives and oral histories show that the Ming Tombs Reservoir was a showcase project in Communist China directed by and involving the country's top leaders. This was one of the first projects to rely on the mobilization of physical labor rather than specialized machinery, driven by a belief in self-reliance and the use of local resources. It argues that the focus on the "masses," rather than engineers or scientists, challenged established engineering procedures and technical traditions. Historical evidence suggests that adopting a "build while being designed" mindset and mobilizing the "masses," projects could be completed, but often in ways that ultimately proved less than optimal. The case study suggests that innovations fail when local enthusiasm and technical knowledge are not balanced. By focusing on the role of the "masses" in shaping a novel technological landscape, this article highlights "mass engineering" to better understand this model of native innovations and economic autarky.


Asunto(s)
Ingeniería , China , Humanos , Historia del Siglo XX , Ingeniería/historia , Comunismo/historia , Política
8.
Proc Natl Acad Sci U S A ; 117(10): 5339-5350, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094197

RESUMEN

Aging manifests with architectural alteration and functional decline of multiple organs throughout an organism. In mammals, aged skin is accompanied by a marked reduction in hair cycling and appearance of bald patches, leading researchers to propose that hair follicle stem cells (HFSCs) are either lost, differentiate, or change to an epidermal fate during aging. Here, we employed single-cell RNA-sequencing to interrogate aging-related changes in the HFSCs. Surprisingly, although numbers declined, aging HFSCs were present, maintained their identity, and showed no overt signs of shifting to an epidermal fate. However, they did exhibit prevalent transcriptional changes particularly in extracellular matrix genes, and this was accompanied by profound structural perturbations in the aging SC niche. Moreover, marked age-related changes occurred in many nonepithelial cell types, including resident immune cells, sensory neurons, and arrector pili muscles. Each of these SC niche components has been shown to influence HF regeneration. When we performed skin injuries that are known to mobilize young HFSCs to exit their niche and regenerate HFs, we discovered that aged skin is defective at doing so. Interestingly, however, in transplantation assays in vivo, aged HFSCs regenerated HFs when supported with young dermis, while young HFSCs failed to regenerate HFs when combined with aged dermis. Together, our findings highlight the importance of SC:niche interactions and favor a model where youthfulness of the niche microenvironment plays a dominant role in dictating the properties of its SCs and tissue health and fitness.


Asunto(s)
Folículo Piloso/fisiología , Regeneración/fisiología , Envejecimiento de la Piel/fisiología , Nicho de Células Madre/fisiología , Células Madre/fisiología , Animales , Dermis/fisiología , Células Epidérmicas/fisiología , Epidermis/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculos/fisiología , Repitelización , Regeneración/genética , Células Receptoras Sensoriales/fisiología , Envejecimiento de la Piel/genética , Nicho de Células Madre/genética , Trasplante de Células Madre , Transcriptoma , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
9.
Genes Dev ; 28(22): 2532-46, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25403182

RESUMEN

Previously, we identified miR-125b as a key regulator of the undifferentiated state of hair follicle stem cells. Here, we show that in both mice and humans, miR-125b is abundantly expressed, particularly at early stages of malignant progression to squamous cell carcinoma (SCC), the second most prevalent cancer worldwide. Moreover, when elevated in normal murine epidermis, miR-125b promotes tumor initiation and contributes to malignant progression. We further show that miR-125b can confer "oncomiR addiction" in early stage malignant progenitors by delaying their differentiation and favoring an SCC cancer stem cell (CSC)-like transcriptional program. To understand how, we systematically identified and validated miR125b targets that are specifically associated with tumors that are dependent on miR-125b. Through molecular and genetic analysis of these targets, we uncovered new insights underlying miR-125b's oncogenic function. Specifically, we show that, on the one hand, mir-125b directly represses stress-responsive MAP kinase genes and associated signaling. On the other hand, it indirectly prolongs activated (phosphorylated) EGFR signaling by repressing Vps4b (vacuolar protein-sorting 4 homolog B), encoding a protein implicated in negatively regulating the endosomal sorting complexes that are necessary for the recycling of active EGFR. Together, these findings illuminate miR-125b as an important microRNA regulator that is shared between normal skin progenitors and their early malignant counterparts.


Asunto(s)
Carcinoma de Células Escamosas/fisiopatología , Diferenciación Celular/genética , MicroARNs/metabolismo , Neoplasias Cutáneas/fisiopatología , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/metabolismo , Animales , Carcinoma de Células Escamosas/genética , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Progresión de la Enfermedad , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Queratinocitos/citología , Queratinocitos/patología , Ratones , MicroARNs/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , Neoplasias Cutáneas/genética , Transcriptoma
10.
Exp Dermatol ; 30(4): 529-545, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33249665

RESUMEN

The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.


Asunto(s)
Células Epiteliales/metabolismo , Homeostasis , Neoplasias Cutáneas/fisiopatología , Piel/metabolismo , Células Madre/metabolismo , Cicatrización de Heridas/fisiología , Animales , Diferenciación Celular , Microambiente Celular , Folículo Piloso/metabolismo , Humanos , Ratones , Transducción de Señal
11.
J Cell Sci ; 126(Pt 15): 3370-9, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23704355

RESUMEN

Various cues initiate multiple signaling pathways to regulate the highly coordinated process of skeletal myogenesis. Myoblast differentiation comprises a series of ordered events starting with cell cycle withdrawal and ending with myocyte fusion, with each step probably controlled by multiple extracellular signals and intracellular signaling pathways. Here we report the identification of Fms-like tyrokine kinase 3 ligand (Flt3L) signaling as a novel regulator of skeletal myogenesis. Flt3L is a multifunctional cytokine in immune cells, but its involvement in skeletal muscle formation has not been reported. We found that Flt3L is expressed in C2C12 myoblasts, with levels increasing throughout differentiation. Knockdown of Flt3L, or its receptor Flt3, suppresses myoblast differentiation, which is rescued by recombinant Flt3L or Flt3, respectively. Differentiation is not rescued, however, by recombinant ligand when the receptor is knocked down, or vice versa, suggesting that Flt3L and Flt3 function together. Flt3L knockdown also inhibits differentiation in mouse primary myoblasts. Both Flt3L and Flt3 are highly expressed in nascent myofibers during muscle regeneration in vivo, and Flt3L siRNA impairs muscle regeneration, validating the physiological significance of Flt3L function in myogenesis. We have identified a cellular mechanism for the myogenic function of Flt3L, as we show that Flt3L promotes cell cycle exit that is necessary for myogenic differentiation. Furthermore, we identify Erk as a relevant target of Flt3L signaling during myogenesis, and demonstrate that Flt3L suppresses Erk signaling through p120RasGAP. In summary, our work reveals an unexpected role for an immunoregulatory cytokine in skeletal myogenesis and a new myogenic pathway.


Asunto(s)
Proteínas de la Membrana/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Masculino , Ratones , Desarrollo de Músculos/fisiología , Fosforilación , Transducción de Señal
12.
J Biol Chem ; 287(52): 43928-35, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23115234

RESUMEN

Mammalian (or mechanistic) target of rapamycin (mTOR) regulates a wide range of cellular and developmental processes by coordinating signaling responses to mitogens, nutrients, and various stresses. Over the last decade, mTOR has emerged as a master regulator of skeletal myogenesis, controlling multiple stages of the myofiber formation process. In this minireview, we present an emerging view of the signaling network underlying mTOR regulation of myogenesis, which contrasts with the well established mechanisms in the regulation of cell and muscle growth. Current questions for future studies are also highlighted.


Asunto(s)
Desarrollo de Músculos/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos , Proteínas Musculares/genética , Serina-Treonina Quinasas TOR/genética
13.
J Biol Chem ; 286(41): 35675-35682, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21852229

RESUMEN

The mammalian target of rapamycin (mTOR) is essential for skeletal myogenesis through controlling distinct cellular pathways. The importance of the canonical mTOR complex 1 signaling components, including raptor, S6K1, and Rheb, had been suggested in muscle maintenance, growth, and metabolism. However, the role of those components in myogenic differentiation is not entirely clear. In this study we have investigated the functions of raptor, S6K1, and Rheb in the differentiation of C2C12 mouse myoblasts. We find that although mTOR knockdown severely impairs myogenic differentiation as expected, the knockdown of raptor, as well as Rheb, enhances differentiation. Consistent with a negative role for these proteins in myogenesis, overexpression of raptor or Rheb inhibits C2C12 differentiation. On the other hand, neither knockdown nor overexpression of S6K1 has any effect. Moreover, the enhanced differentiation elicited by raptor or Rheb knockdown is accompanied by increased Akt activation, elevated IRS1 protein levels, and decreased Ser-307 (human Ser-312) phosphorylation on IRS1. Finally, IRS1 knockdown eliminated the enhancement in differentiation elicited by raptor or Rheb knockdown, suggesting that IRS1 is a critical mediator of the myogenic functions of raptor and Rheb. In conclusion, the Rheb-mTOR/raptor pathway negatively regulates myogenic differentiation by suppressing IRS1-PI3K-Akt signaling. These findings underscore the versatility of mTOR signaling in biological regulations and implicate the existence of novel mTOR complexes and/or signaling mechanism in skeletal myogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Neuropéptidos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Diferenciación Celular/fisiología , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Ratones , Proteínas de Unión al GTP Monoméricas/genética , Músculo Esquelético/citología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Neuropéptidos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro , Proteína Reguladora Asociada a mTOR , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética
14.
Front Cell Dev Biol ; 10: 903904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663405

RESUMEN

Skin is the largest organ in human body, harboring a plethora of cell types and serving as the organismal barrier. Skin aging such as wrinkling and hair graying is graphically pronounced, and the molecular mechanisms behind these phenotypic manifestations are beginning to unfold. As in many other organs and tissues, epigenetic and metabolic deregulations have emerged as key aging drivers. Particularly in the context of the skin epithelium, the epigenome and metabolome coordinately shape lineage plasticity and orchestrate stem cell function during aging. Our review discusses recent studies that proposed molecular mechanisms that drive the degeneration of hair follicles, a major appendage of the skin. By focusing on skin while comparing it to model organisms and adult stem cells of other tissues, we summarize literature on genotoxic stress, nutritional sensing, metabolic rewiring, mitochondrial activity, and epigenetic regulations of stem cell plasticity. Finally, we speculate about the rejuvenation potential of rate-limiting upstream signals during aging and the dominant role of the tissue microenvironment in dictating aged epithelial stem cell function.

15.
Pharmacol Ther ; 206: 107448, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31836455

RESUMEN

Cancer hijacks embryonic development and adult wound repair mechanisms to fuel malignancy. Cancer frequently originates from de-regulated adult stem cells or progenitors, which are otherwise essential units for postnatal tissue remodeling and repair. Cancer genomics studies have revealed convergence of multiple cancers across organ sites, including squamous cell carcinomas (SCCs), a common group of cancers arising from the head and neck, esophagus, lung, cervix and skin. In this review, we summarize our current knowledge on the molecular drivers of SCCs, including these five major organ sites. We especially focus our discussion on lineage dependent driver genes and pathways, in the context of squamous development and stratification. We then use skin as a model to discuss the notion of field cancerization during SCC carcinogenesis, and cancer as a wound that never heals. Finally, we turn to the idea of context dependency widely observed in cancer driver genes, and outline literature support and possible explanations for their lineage specific functions. Through these discussions, we aim to provide an up-to-date summary of molecular mechanisms driving tumor plasticity in squamous cancers. Such basic knowledge will be helpful to inform the clinics for better stratifying cancer patients, revealing novel drug targets and providing effective treatment options.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias Cutáneas/genética , Animales , Genómica , Humanos
16.
Nat Cell Biol ; 22(11): 1396, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33046885

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Nat Cell Biol ; 22(7): 779-790, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32451440

RESUMEN

Tissue stem cells are the cell of origin for many malignancies. Metabolites regulate the balance between self-renewal and differentiation, but whether endogenous metabolic pathways or nutrient availability predispose stem cells towards transformation remains unknown. Here, we address this question in epidermal stem cells (EpdSCs), which are a cell of origin for squamous cell carcinoma. We find that oncogenic EpdSCs are serine auxotrophs whose growth and self-renewal require abundant exogenous serine. When extracellular serine is limited, EpdSCs activate de novo serine synthesis, which in turn stimulates α-ketoglutarate-dependent dioxygenases that remove the repressive histone modification H3K27me3 and activate differentiation programmes. Accordingly, serine starvation or enforced α-ketoglutarate production antagonizes squamous cell carcinoma growth. Conversely, blocking serine synthesis or repressing α-ketoglutarate-driven demethylation facilitates malignant progression. Together, these findings reveal that extracellular serine is a critical determinant of EpdSC fate and provide insight into how nutrient availability is integrated with stem cell fate decisions during tumour initiation.


Asunto(s)
Carcinoma de Células Escamosas/patología , Transformación Celular Neoplásica/patología , Células Epidérmicas/patología , Ácidos Cetoglutáricos/metabolismo , Serina/metabolismo , Células Madre/patología , Animales , Carcinoma de Células Escamosas/metabolismo , Diferenciación Celular , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Células Epidérmicas/metabolismo , Femenino , Humanos , Masculino , Ratones , Células Madre/metabolismo
18.
Nat Cell Biol ; 22(6): 640-650, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32393888

RESUMEN

Tissue homeostasis and regeneration rely on resident stem cells (SCs), whose behaviour is regulated through niche-dependent crosstalk. The mechanisms underlying SC identity are still unfolding. Here, using spatiotemporal gene ablation in murine hair follicles, we uncover a critical role for the transcription factors (TFs) nuclear factor IB (NFIB) and IX (NFIX) in maintaining SC identity. Without NFI TFs, SCs lose their hair-regenerating capability, and produce skin bearing striking resemblance to irreversible human alopecia, which also displays reduced NFIs. Through single-cell transcriptomics, ATAC-Seq and ChIP-Seq profiling, we expose a key role for NFIB and NFIX in governing super-enhancer maintenance of the key hair follicle SC-specific TF genes. When NFIB and NFIX are genetically removed, the stemness epigenetic landscape is lost. Super-enhancers driving SC identity are decommissioned, while unwanted lineages are de-repressed ectopically. Together, our findings expose NFIB and NFIX as crucial rheostats of tissue homeostasis, functioning to safeguard the SC epigenome from a breach in lineage confinement that otherwise triggers irreversible tissue degeneration.


Asunto(s)
Alopecia/patología , Diferenciación Celular , Cromatina/metabolismo , Folículo Piloso/citología , Factores de Transcripción NFI/fisiología , Células Madre/citología , Alopecia/genética , Alopecia/metabolismo , Animales , Células Cultivadas , Cromatina/genética , Femenino , Folículo Piloso/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regeneración , Células Madre/metabolismo
19.
Am J Physiol Cell Physiol ; 297(6): C1434-44, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19794149

RESUMEN

Rapamycin-sensitive signaling is required for skeletal muscle differentiation and remodeling. In cultured myoblasts, the mammalian target of rapamycin (mTOR) has been reported to regulate differentiation at different stages through distinct mechanisms, including one that is independent of mTOR kinase activity. However, the kinase-independent function of mTOR remains controversial, and no in vivo studies have examined those mTOR myogenic mechanisms previously identified in vitro. In this study, we find that rapamycin impairs injury-induced muscle regeneration. To validate the role of mTOR with genetic evidence and to probe the mechanism of mTOR function, we have generated and characterized transgenic mice expressing two mutants of mTOR under the control of human skeletal actin (HSA) promoter: rapamycin-resistant (RR) and RR/kinase-inactive (RR/KI). Our results show that muscle regeneration in rapamycin-administered mice is restored by RR-mTOR expression. In the RR/KI-mTOR mice, nascent myofiber formation during the early phase of regeneration proceeds in the presence of rapamycin, but growth of the regenerating myofibers is blocked by rapamycin. Igf2 mRNA levels increase drastically during early regeneration, which is sensitive to rapamycin in wild-type muscles but partially resistant to rapamycin in both RR- and RR/KI-mTOR muscles, consistent with mTOR regulation of Igf2 expression in a kinase-independent manner. Furthermore, systemic ablation of S6K1, a target of mTOR kinase, results in impaired muscle growth but normal nascent myofiber formation during regeneration. Therefore, mTOR regulates muscle regeneration through kinase-independent and kinase-dependent mechanisms at the stages of nascent myofiber formation and myofiber growth, respectively.


Asunto(s)
Proteínas Portadoras/metabolismo , Músculo Esquelético/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas/metabolismo , Regeneración/fisiología , Animales , Proteínas Portadoras/genética , Crecimiento/efectos de los fármacos , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Mensajero/metabolismo , Regeneración/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA