Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(17): e2208718120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068231

RESUMEN

The hemagglutinin (HA) stem region is a major target of universal influenza vaccine efforts owing to the presence of highly conserved epitopes across multiple influenza A virus (IAV) strains and subtypes. To explore the potential impact of vaccine-induced immunity targeting the HA stem, we examined the fitness effects of viral escape from stem-binding broadly neutralizing antibodies (stem-bnAbs). Recombinant viruses containing each individual antibody escape substitution showed diminished replication compared to wild-type virus, indicating that stem-bnAb escape incurred fitness costs. A second-site mutation in the HA head domain (N129D; H1 numbering) reduced the fitness effects observed in primary cell cultures and likely enabled the selection of escape mutations. Functionally, this putative permissive mutation increased HA avidity for its receptor. These results suggest a mechanism of epistasis in IAV, wherein modulating the efficiency of attachment eases evolutionary constraints imposed by the requirement for membrane fusion. Taken together, the data indicate that viral escape from stem-bnAbs is costly but highlights the potential for epistatic interactions to enable evolution within the functionally constrained HA stem domain.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes/genética , Epistasis Genética , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza/genética , Hemaglutininas , Gripe Humana/genética , Gripe Humana/prevención & control
2.
J Virol ; 97(10): e0074323, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800947

RESUMEN

IMPORTANCE: Determining the relevant amino acids involved in antigenic drift on the surface protein hemagglutinin (HA) is critical to understand influenza virus evolution and efficient assessment of vaccine strains relative to current circulating strains. We used antigenic cartography to generate an antigenic map of the H9 hemagglutinin (HA) using sera produced in one of the most relevant minor poultry species, Japanese quail. Key antigenic positions were identified and tested to confirm their impact on the antigenic profile. This work provides a better understanding of the antigenic diversity of the H9 HA as it relates to reactivity to quail sera and will facilitate a rational approach for selecting more efficacious vaccines against poultry-origin H9 influenza viruses in minor poultry species.


Asunto(s)
Deriva y Cambio Antigénico , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Coturnix , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Aves de Corral
3.
PLoS Pathog ; 18(10): e1010734, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36279276

RESUMEN

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS2) affected the geriatric population. Among research models, Golden Syrian hamsters (GSH) are one of the most representative to study SARS2 pathogenesis and host responses. However, animal studies that recapitulate the effects of SARS2 in the human geriatric population are lacking. To address this gap, we inoculated 14 months old GSH with a prototypic ancestral strain of SARS2 and studied the effects on virus pathogenesis, virus shedding, and respiratory and gastrointestinal microbiome changes. SARS2 infection led to high vRNA loads in the nasal turbinates (NT), lungs, and trachea as well as higher pulmonary lesions scores later in infection. Dysbiosis throughout SARS2 disease progression was observed in the pulmonary microbial dynamics with the enrichment of opportunistic pathogens (Haemophilus, Fusobacterium, Streptococcus, Campylobacter, and Johnsonella) and microbes associated with inflammation (Prevotella). Changes in the gut microbial community also reflected an increase in multiple genera previously associated with intestinal inflammation and disease (Helicobacter, Mucispirillum, Streptococcus, unclassified Erysipelotrichaceae, and Spirochaetaceae). Influenza A virus (FLUAV) pre-exposure resulted in slightly more pronounced pathology in the NT and lungs early on (3 dpc), and more notable changes in lungs compared to the gut microbiome dynamics. Similarities among aged GSH and the microbiome in critically ill COVID-19 patients, particularly in the lower respiratory tract, suggest that GSHs are a representative model to investigate microbial changes during SARS2 infection. The relationship between the residential microbiome and other confounding factors, such as SARS2 infection, in a widely used animal model, contributes to a better understanding of the complexities associated with the host responses during viral infections.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Cricetinae , Animales , Humanos , Anciano , Lactante , SARS-CoV-2 , Mesocricetus , Disbiosis/patología , Pulmón/patología , Inflamación/patología
4.
J Virol ; 96(22): e0148022, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36317880

RESUMEN

Influenza A viruses (FLUAV) cause respiratory diseases in many host species, including humans and pigs. The spillover of FLUAV between swine and humans has been a concern for both public health and the swine industry. With the emergence of the triple reassortant internal gene (TRIG) constellation, establishment of human-origin FLUAVs in pigs has become more common, leading to increased viral diversity. However, little is known about the adaptation processes that are needed for a human-origin FLUAV to transmit and become established in pigs. We generated a reassortant FLUAV (VIC11pTRIG) containing surface gene segments from a human FLUAV strain and internal gene segments from the 2009 pandemic and TRIG FLUAV lineages and demonstrated that it can replicate and transmit in pigs. Sequencing and variant analysis identified three mutants that emerged during replication in pigs, which were mapped near the receptor binding site of the hemagglutinin (HA). The variants replicated more efficiently in differentiated swine tracheal cells compared to the virus containing the wildtype human-origin HA, and one of them was present in all contact pigs. These results show that variants are selected quickly after replication of human-origin HA in pigs, leading to improved fitness in the swine host, likely contributing to transmission. IMPORTANCE Influenza A viruses cause respiratory disease in several species, including humans and pigs. The bidirectional transmission of FLUAV between humans and pigs plays a significant role in the generation of novel viral strains, greatly impacting viral epidemiology. However, little is known about the evolutionary processes that allow human FLUAV to become established in pigs. In this study, we generated reassortant viruses containing human seasonal HA and neuraminidase (NA) on different constellations of internal genes and tested their ability to replicate and transmit in pigs. We demonstrated that a virus containing a common internal gene constellation currently found in U.S. swine was able to transmit efficiently via the respiratory route. We identified a specific amino acid substitution that was fixed in the respiratory contact pigs that was associated with improved replication in primary swine tracheal epithelial cells, suggesting it was crucial for the transmissibility of the human virus in pigs.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Humanos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/genética , Gripe Humana/transmisión , Mutación , Infecciones por Orthomyxoviridae/transmisión , Virus Reordenados/genética , Porcinos , Enfermedades de los Porcinos/virología
5.
BMC Genomics ; 23(1): 510, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35836127

RESUMEN

BACKGROUND: The SARS-CoV-2 virus is responsible for the COVID-19 pandemic. To better understand the evolution of SARS-CoV-2 early in the pandemic in the Province of Cordoba, Argentina, we performed a comparative genomic analysis of SARS-CoV-2 strains detected in survivors and non-survivors of COVID-19. We also carried out an epidemiological study to find a possible association between the symptoms and comorbidities of these patients with their clinical outcomes. RESULTS: A representative sampling was performed in different cities in the Province of Cordoba. Ten and nine complete SARS-CoV-2 genomes were obtained by next-generation sequencing of nasopharyngeal specimens from non-survivors and survivors, respectively. Phylogenetic and phylodynamic analyses revealed multiple introductions of the most common lineages in South America, including B.1, B.1.1.1, B.1.499, and N.3. Fifty-six mutations were identified, with 14% of those in common between the non-survivor and survivor groups. Specific SARS-CoV-2 mutations for survivors constituted 25% whereas for non-survivors they were 41% of the repertoire, indicating partial selectivity. The non-survivors' variants showed higher diversity in 9 genes, with a majority in Nsp3, while the survivors' variants were detected in 5 genes, with a higher incidence in the Spike protein. At least one comorbidity was present in 60% of non-survivor patients and 33% of survivors. Age 75-85 years (p = 0.018) and hospitalization (p = 0.019) were associated with non-survivor patients. Related to the most common symptoms, the prevalence of fever was similar in both groups, while dyspnea was more frequent among non-survivors and cough among survivors. CONCLUSIONS: This study describes the association of clinical characteristics with the clinical outcomes of survivors and non-survivors of COVID-19 patients, and the specific mutations found in the genome sequences of SARS-CoV-2 in each patient group. Future research on the functional characterization of novel mutations should be performed to understand the role of these variations in SARS-CoV-2 pathogenesis and COVID-19 disease outcomes. These results add new genomic data to better understand the evolution of the SARS-CoV-2 variants that spread in Argentina during the first wave of the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anciano , Anciano de 80 o más Años , Argentina/epidemiología , COVID-19/epidemiología , Genoma Viral , Genómica , Humanos , Pandemias , Filogenia , SARS-CoV-2/genética
6.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567980

RESUMEN

Influenza A viruses (IAVs) remain a significant public health threat, causing more than 300,000 hospitalizations in the United States during the 2015-2016 season alone. While only a few IAVs of avian origin have been associated with human infections, the ability of these viruses to cause zoonotic infections further increases the public health risk of influenza. Of these, H9N2 viruses in Asia are of particular importance as they have contributed internal gene segments to other emerging zoonotic IAVs. Notably, recent H9N2 viruses have acquired molecular markers that allow for a transition from avian-like to human-like terminal sialic acid (SA) receptor recognition via a single amino acid change at position 226 (H3 numbering), from glutamine (Q226) to leucine (L226), within the hemagglutinin (HA) receptor-binding site (RBS). We sought to determine the plasticity of amino acid 226 and the biological effects of alternative amino acids on variant viruses. We created a library of viruses with the potential of having any of the 20 amino acids at position 226 on a prototypic H9 HA subtype IAV. We isolated H9 viruses that carried naturally occurring amino acids, variants found in other subtypes, and variants not found in any subtype at position 226. Fitness studies in quails revealed that some natural amino acids conferred an in vivo replication advantage. This study shows the flexibility of position 226 of the HA of H9 influenza viruses and the resulting effect of single amino acid changes on the phenotype of variants in vivo and in vitroIMPORTANCE A single amino acid change at position 226 in the hemagglutinin (HA) from glutamine (Q) to leucine (L) has been shown to play a key role in receptor specificity switching in various influenza virus HA subtypes, including H9. We tested the flexibility of amino acid usage and determined the effects of such changes. The results reveal that amino acids other than L226 and Q226 are well tolerated and that some amino acids allow for the recognition of both avian and human influenza virus receptors in the absence of other changes. Our results can inform better avian influenza virus surveillance efforts as well as contribute to rational vaccine design and improve structural molecular dynamics algorithms.


Asunto(s)
Aminoácidos/genética , Sitios de Unión/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Tropismo/fisiología , Replicación Viral/genética , Sustitución de Aminoácidos/genética , Animales , Línea Celular , Línea Celular Tumoral , Pollos , Perros , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Vacunas contra la Influenza/genética , Gripe Aviar/virología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Unión Proteica/genética , Codorniz/virología , Receptores de Superficie Celular/genética
7.
J Virol ; 93(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30355680

RESUMEN

The hemagglutinin (HA), a glycoprotein on the surface of influenza A virus (IAV), initiates the virus life cycle by binding to terminal sialic acid (SA) residues on host cells. The HA gradually accumulates amino acid substitutions that allow IAV to escape immunity through a mechanism known as antigenic drift. We recently confirmed that a small set of amino acid residues are largely responsible for driving antigenic drift in swine-origin H3 IAV. All identified residues are located adjacent to the HA receptor binding site (RBS), suggesting that substitutions associated with antigenic drift may also influence receptor binding. Among those substitutions, residue 145 was shown to be a major determinant of antigenic evolution. To determine whether there are functional constraints to substitutions near the RBS and their impact on receptor binding and antigenic properties, we carried out site-directed mutagenesis experiments at the single-amino-acid level. We generated a panel of viruses carrying substitutions at residue 145 representing all 20 amino acids. Despite limited amino acid usage in nature, most substitutions at residue 145 were well tolerated without having a major impact on virus replication in vitro All substitution mutants retained receptor binding specificity, but the substitutions frequently led to decreased receptor binding. Glycan microarray analysis showed that substitutions at residue 145 modulate binding to a broad range of glycans. Furthermore, antigenic characterization identified specific substitutions at residue 145 that altered antibody recognition. This work provides a better understanding of the functional effects of amino acid substitutions near the RBS and the interplay between receptor binding and antigenic drift.IMPORTANCE The complex and continuous antigenic evolution of IAVs remains a major hurdle for vaccine selection and effective vaccination. On the hemagglutinin (HA) of the H3N2 IAVs, the amino acid substitution N 145 K causes significant antigenic changes. We show that amino acid 145 displays remarkable amino acid plasticity in vitro, tolerating multiple amino acid substitutions, many of which have not yet been observed in nature. Mutant viruses carrying substitutions at residue 145 showed no major impairment in virus replication in the presence of lower receptor binding avidity. However, their antigenic characterization confirmed the impact of the 145 K substitution in antibody immunodominance. We provide a better understanding of the functional effects of amino acid substitutions implicated in antigenic drift and its consequences for receptor binding and antigenicity. The mutation analyses presented in this report represent a significant data set to aid and test the ability of computational approaches to predict binding of glycans and in antigenic cartography analyses.


Asunto(s)
Sustitución de Aminoácidos , Hemaglutininas Virales/química , Hemaglutininas Virales/metabolismo , Virus de la Influenza A/fisiología , Porcinos/virología , Animales , Anticuerpos Antivirales/metabolismo , Sitios de Unión , Perros , Flujo Genético , Células HEK293 , Hemaglutininas Virales/genética , Humanos , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Polisacáridos/metabolismo , Unión Proteica , Replicación Viral
8.
J Virol ; 92(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30135124

RESUMEN

Influenza virus infections continue to pose a major public health threat worldwide associated with seasonal epidemics and sporadic pandemics. Vaccination is considered the first line of defense against influenza. Live attenuated influenza virus vaccines (LAIVs) may provide superior responses compared to inactivated vaccines because the former can better elicit a combination of humoral and cellular responses by mimicking a natural infection. Unfortunately, during the 2013-2014, 2014-2015, and 2015-2016 seasons, concerns emerged about the effectiveness of the only LAIV approved in the United States that prevented the Advisory Committee on Immunization Practices (ACIP) from recommending its use. Such drawbacks open up the opportunity for alternative LAIV strategies that could overcome such concerns. Previously, we developed a combined strategy of temperature-sensitive mutations in the PB2 and PB1 segments and an epitope tag in the C terminus of PB1 that effectively attenuates influenza A viruses of avian and mammalian origin. More recently, we adopted a similar strategy for influenza B viruses. The resulting attenuated (att) influenza A and B viruses were safe, immunogenic, and protective against lethal influenza virus challenge in a variety of animal models. In this report, we provide evidence of the potential use of our att strategy in a quadrivalent LAIV (QIV) formulation carrying H3N2 and H1N1 influenza A virus subtype viruses and two antigenic lineages of influenza B viruses. In naive DBA/2J mice, two doses of the QIV elicited hemagglutination inhibition (HI) responses with HI titers of ≥40 and effectively protected against lethal challenge with prototypical pandemic H1N1 influenza A and influenza B virus strains.IMPORTANCE Seasonal influenza viruses infect 1 billion people worldwide and are associated with ∼500,000 deaths annually. In addition, the never-ending emergence of zoonotic influenza viruses associated with lethal human infections and of pandemic concern calls for the development of better vaccines and/or vaccination strategies against influenza virus. Regardless of the strategy, novel influenza virus vaccines must aim at providing protection against both seasonal influenza A and B viruses. In this study, we tested an alternative quadrivalent live attenuated influenza virus vaccine (QIV) formulation whose individual components have been previously shown to provide protection. We demonstrate in proof-of principle studies in mice that the QIV provides effective protection against lethal challenge with either influenza A or B virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/inmunología , Vacunas Atenuadas/inmunología , Animales , Anticuerpos Antivirales/sangre , Perros , Femenino , Células HEK293 , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/genética , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos DBA , Mutación/genética , Prueba de Estudio Conceptual , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética
9.
J Virol ; 91(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28381580

RESUMEN

Influenza B virus (IBV) is considered a major human pathogen, responsible for seasonal epidemics of acute respiratory illness. Two antigenically distinct IBV hemagglutinin (HA) lineages cocirculate worldwide with little cross-reactivity. Live attenuated influenza virus (LAIV) vaccines have been shown to provide better cross-protective immune responses than inactivated vaccines by eliciting local mucosal immunity and systemic B cell- and T cell-mediated memory responses. We have shown previously that incorporation of temperature-sensitive (ts) mutations into the PB1 and PB2 subunits along with a modified HA epitope tag in the C terminus of PB1 resulted in influenza A viruses (IAV) that are safe and effective as modified live attenuated (att) virus vaccines (IAV att). We explored whether analogous mutations in the IBV polymerase subunits would result in a stable virus with an att phenotype. The PB1 subunit of the influenza B/Brisbane/60/2008 strain was used to incorporate ts mutations and a C-terminal HA tag. Such modifications resulted in a B/Bris att strain with ts characteristics in vitro and an att phenotype in vivo Vaccination studies in mice showed that a single dose of the B/Bris att candidate stimulated sterilizing immunity against lethal homologous challenge and complete protection against heterologous challenge. These studies show the potential of an alternative LAIV platform for the development of IBV vaccines.IMPORTANCE A number of issues with regard to the effectiveness of the LAIV vaccine licensed in the United States (FluMist) have arisen over the past three seasons (2013-2014, 2014-2015, and 2015-2016). While the reasons for the limited robustness of the vaccine-elicited immune response remain controversial, this problem highlights the critical importance of continued investment in LAIV development and creates an opportunity to improve current strategies so as to develop more efficacious vaccines. Our laboratory has developed an alternative strategy, the incorporation of 2 amino acid mutations and a modified HA tag at the C terminus of PB1, which is sufficient to attenuate the IBV. As a LAIV, this novel vaccine provides complete protection against IBV strains. The availability of attenuated IAV and IBV backbones based on contemporary strains offers alternative platforms for the development of LAIVs that may overcome current limitations.


Asunto(s)
Virus de la Influenza B/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Aminoácidos/genética , Animales , Variación Antigénica/genética , Variación Antigénica/inmunología , Genoma Viral , Humanos , Inmunidad Humoral , Virus de la Influenza B/enzimología , Vacunas contra la Influenza/genética , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Pulmón/patología , Pulmón/virología , Ratones , Mutación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Linfocitos T/inmunología , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunología
10.
NPJ Vaccines ; 9(1): 45, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409236

RESUMEN

Influenza B virus (FLUBV) poses a significant infectious threat, with frequent vaccine mismatch limiting its effectiveness. Our previous work investigated the safety and efficacy of modified live attenuated FLUBV vaccines with rearranged genomes (FluB-RAM and FluB-RANS) or a temperature-sensitive PB1 segment with a C-terminal HA tag (FluB-att). In this study, we compared the immune responses of female and male DBA/2J mice vaccinated with these vaccines, including versions containing a chimeric HA segment with an N-terminal IgA-inducing peptide (IGIP). Importantly, both recombinant viruses with and without IGIP remained genetically stable during egg passage. We found that introducing IGIP strengthened vaccine attenuation, particularly for FluB-RAM/IGIP. Prime-boost vaccination completely protected mice against lethal challenge with a homologous FLUBV strain. Notably, recombinant viruses induced robust neutralizing antibody responses (hemagglutination inhibition titers ≥40) alongside antibodies against NA and NP. Interestingly, female mice displayed a consistent trend of enhanced humoral and cross-reactive IgG and IgA responses against HA, NA, and NP compared to male counterparts, regardless of the vaccine used. However, the presence of IGIP generally led to lower anti-HA responses but higher anti-NA and anti-NP responses, particularly of the IgA isotype. These trends were further reflected in mucosal and serological responses two weeks after challenge, with clear distinctions based on sex, vaccine backbone, and IGIP inclusion. These findings hold significant promise for advancing the development of universal influenza vaccines.

11.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328128

RESUMEN

Current influenza A vaccines fall short, leaving both humans and animals vulnerable. To address this issue, we have developed attenuated modified live virus (MLV) vaccines against influenza using genome rearrangement techniques targeting the internal gene segments of FLUAV. The rearranged M2 (RAM) strategy involves cloning the M2 ORF downstream of the PB1 ORF in segment 2 and incorporating multiple early stop codons within the M2 ORF in segment 7. Additionally, the IgA-inducing protein (IGIP) coding region was inserted into the HA segment to further attenuate the virus and enhance protective mucosal responses. RAM-IGIP viruses exhibit similar growth rates to wild type (WT) viruses in vitro and remain stable during multiple passages in cells and embryonated eggs. The safety, immunogenicity, and protective efficacy of the RAM-IGIP MLV vaccine against the prototypical 2009 pandemic H1N1 strain A/California/04/2009 (H1N1) (Ca/04) were evaluated in Balb/c mice and compared to a prototypic cold-adapted live attenuated virus vaccine. The results demonstrate that the RAM-IGIP virus exhibits attenuated virulence in vivo. Mice vaccinated with RAM-IGIP and subsequently challenged with an aggressive lethal dose of the Ca/04 strain exhibited complete protection. Analysis of the humoral immune response revealed that the inclusion of IGIP enhanced the production of neutralizing antibodies and augmented the antibody-dependent cellular cytotoxicity response. Similarly, the RAM-IGIP potentiated the mucosal immune response against various FLUAV subtypes. Moreover, increased antibodies against NP and NA responses were observed. These findings support the development of MLVs utilizing genome rearrangement strategies in conjunction with the incorporation of immunomodulators. IMPORTANCE: Current influenza vaccines offer suboptimal protection, leaving both humans and animals vulnerable. Our novel attenuated MLV vaccine, built by rearranging FLUAV genome segments and incorporating the IgA-inducing protein, shows promising results. This RAM-IGIP vaccine exhibits safe attenuation, robust immune responses, and complete protection against lethal viral challenge in mice. Its ability to stimulate broad-spectrum humoral and mucosal immunity against diverse FLUAV subtypes makes it a highly promising candidate for improved influenza vaccines.

12.
Microbiol Spectr ; 11(1): e0287822, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475876

RESUMEN

Commercial swine farms provide unique systems for interspecies transmission of influenza A viruses (FLUAVs) at the animal-human interface. Bidirectional transmission of FLUAVs between pigs and humans plays a significant role in the generation of novel strains that become established in the new host population. Active FLUAV surveillance was conducted for 2 years on a commercial pig farm in Southern Guatemala with no history of FLUAV vaccination. Nasal swabs (n = 2,094) from fattening pigs (6 to 24 weeks old) with respiratory signs were collected weekly from May 2016 to February 2018. Swabs were screened for FLUAV by real-time reverse transcriptase PCR (RRT-PCR), and full virus genomes of FLUAV-positive swabs were sequenced by next-generation sequencing (NGS). FLUAV prevalence was 12.0% (95% confidence interval [CI], 10.6% to 13.4%) with two distinct periods of high infection. All samples were identified as FLUAVs of the H1N1 subtype within the H1 swine clade 1A.3.3.2 and whose ancestors are the human origin 2009 H1N1 influenza pandemic virus (H1N1 pdm09). Compared to the prototypic reference segment sequence, 10 amino acid signatures were observed on relevant antigenic sites on the hemagglutinin. The Guatemalan swine-origin FLUAVs show independent evolution from other H1N1 pdm09 FLUAVs circulating in Central America. The zoonotic risk of these viruses remains unknown but strongly calls for continued FLUAV surveillance in pigs in Guatemala. IMPORTANCE Despite increased surveillance efforts, the epidemiology of FLUAVs circulating in swine in Latin America remains understudied. For instance, the 2009 H1N1 influenza pandemic strain (H1N1 pdm09) emerged in Mexico, but its circulation remained undetected in pigs. In Central America, Guatemala is the country with the largest swine industry. We found a unique group of H1N1 pdm09 sequences that suggests independent evolution from similar viruses circulating in Central America. These viruses may represent the establishment of a novel genetic lineage with the potential to reassort with other cocirculating viruses and whose zoonotic risk remains to be determined.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Porcinos , Humanos , Animales , Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Granjas , Guatemala/epidemiología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Filogenia
13.
Viruses ; 15(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36851697

RESUMEN

Wild aquatic birds are considered the natural hosts of 16 HA (H1-H16) and 9 NA (N1-N9) subtypes of influenza A viruses (FLUAV) found in different combinations. H14 FLUAVs are rarely detected in nature. Since 2011, H14 FLUAVs have been consistently detected in Guatemala, leading to the largest collection of this subtype from a single country. All H14 FLUAVs in Guatemala were detected from blue-winged teal samples. In this report, 17 new full-length H14 FLUAV genome sequences detected from 2014 until 2019 were analyzed and compared to all published H14 sequences, including Guatemala, North America, and Eurasia. The H14 FLUAVs identified in Guatemala were mostly associated with the N3 subtype (n = 25), whereas the rest were paired with either N4 (n = 7), N5 (n = 4), N6 (n = 1), and two mixed infections (N3/N5 n = 2, and N2/N3 n = 1). H14 FLUAVs in Guatemala belong to a distinct H14 lineage in the Americas that is evolving independently from the Eurasian H14 lineage. Of note, the ORF of the H14 HA segments showed three distinct motifs at the cleavage site, two of these containing arginine instead of lysine in the first and fourth positions, not previously described in other countries. The effects of these mutations on virus replication, virulence, and/or transmission remain unknown and warrant further studies.


Asunto(s)
Patos , Virus de la Influenza A , Animales , Guatemala , Ecología , Arginina , Virus de la Influenza A/genética
14.
Virus Evol ; 8(1): veac001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223084

RESUMEN

Influenza A viruses (IAVs) are constantly evolving. Crucial steps in the infection cycle, such as sialic acid (SA) receptor binding on the host cell surface, can either promote or hamper the emergence of new variants. We previously assessed the relative fitness in Japanese quail of H9N2 variant viruses differing at a single amino acid position, residue 216 in the hemagglutinin (HA) viral surface protein. This site is known to modulate SA recognition. Our prior study generated a valuable set of longitudinal samples from quail transmission groups where the inoculum comprised different mixed populations of HA 216 variant viruses. Here, we leveraged these samples to examine the evolutionary dynamics of viral populations within and between inoculated and naïve contact quails. We found that positive selection dominated HA gene evolution, but fixation of the fittest variant depended on the competition mixture. Analysis of the whole genome revealed further evidence of positive selection acting both within and between hosts. Positive selection drove fixation of variants in non-HA segments within inoculated and contact quails. Importantly, transmission bottlenecks were modulated by the molecular signature at HA 216, revealing viral receptor usage as a determinant of transmitted diversity. Overall, we show that selection strongly shaped the evolutionary dynamics within and between quails. These findings support the notion that selective processes act effectively on IAV populations in poultry hosts, facilitating rapid viral evolution in this ecological niche.

15.
Nat Commun ; 13(1): 6846, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369504

RESUMEN

Influenza A virus (IAV) genetic exchange through reassortment has the potential to accelerate viral evolution and has played a critical role in the generation of multiple pandemic strains. For reassortment to occur, distinct viruses must co-infect the same cell. The spatio-temporal dynamics of viral dissemination within an infected host therefore define opportunity for reassortment. Here, we used wild type and synonymously barcoded variant viruses of a pandemic H1N1 strain to examine the within-host viral dynamics that govern reassortment in guinea pigs, ferrets and swine. The first two species are well-established models of human influenza, while swine are a natural host and a frequent conduit for cross-species transmission and reassortment. Our results show reassortment to be pervasive in all three hosts but less frequent in swine than in ferrets and guinea pigs. In ferrets, tissue-specific differences in the opportunity for reassortment are also evident, with more reassortants detected in the nasal tract than the lower respiratory tract. While temporal trends in viral diversity are limited, spatial patterns are clear, with heterogeneity in the viral genotypes detected at distinct anatomical sites revealing extensive compartmentalization of reassortment and replication. Our data indicate that the dynamics of viral replication in mammals allow diversification through reassortment but that the spatial compartmentalization of variants likely shapes their evolution and onward transmission.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Cobayas , Humanos , Porcinos , Virus de la Influenza A/genética , Virus Reordenados/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Hurones , Mamíferos
16.
Microbiol Spectr ; 9(1): e0053621, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34378965

RESUMEN

Transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths and declining economies around the world. K18-hACE2 mice develop disease resembling severe SARS-CoV-2 infection in a virus dose-dependent manner. The relationship between SARS-CoV-2 and the intestinal or respiratory microbiome is not fully understood. In this context, we characterized the cecal and lung microbiomes of SARS-CoV-2-challenged K18-hACE2 transgenic mice in the presence or absence of treatment with the Mpro inhibitor GC-376. Cecum microbiome showed decreased Shannon and inverse (Inv) Simpson diversity indexes correlating with SARS-CoV-2 infection dosage and a difference of Bray-Curtis dissimilarity distances among control and infected mice. Bacterial phyla such as Firmicutes, particularly, Lachnospiraceae and Oscillospiraceae, were significantly less abundant, while Verrucomicrobia, particularly, the family Akkermansiaceae, were increasingly more prevalent during peak infection in mice challenged with a high virus dose. In contrast to the cecal microbiome, the lung microbiome showed similar microbial diversity among the control, low-, and high-dose challenge virus groups, independent of antiviral treatment. Bacterial phyla in the lungs such as Bacteroidetes decreased, while Firmicutes and Proteobacteria were significantly enriched in mice challenged with a high dose of SARS-CoV-2. In summary, we identified changes in the cecal and lung microbiomes of K18-hACE2 mice with severe clinical signs of SARS-CoV-2 infection. IMPORTANCE The COVID-19 pandemic has resulted in millions of deaths. The host's respiratory and intestinal microbiome can affect directly or indirectly the immune system during viral infections. We characterized the cecal and lung microbiomes in a relevant mouse model challenged with a low or high dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence or absence of an antiviral Mpro inhibitor, GC-376. Decreased microbial diversity and taxonomic abundances of the phyla Firmicutes, particularly, Lachnospiraceae, correlating with infection dosage were observed in the cecum. In addition, microbes within the family Akkermansiaceae were increasingly more prevalent during peak infection, which is observed in other viral infections. The lung microbiome showed similar microbial diversity to that of the control, independent of antiviral treatment. Decreased Bacteroidetes and increased Firmicutes and Proteobacteria were observed in the lungs in a virus dose-dependent manner. These studies add to a better understanding of the complexities associated with the intestinal microbiome during respiratory infections.


Asunto(s)
COVID-19/inmunología , COVID-19/microbiología , Microbioma Gastrointestinal/fisiología , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales , Biodiversidad , Modelos Animales de Enfermedad , Femenino , Pulmón/inmunología , Melfalán , Ratones , Ratones Transgénicos , Virosis/inmunología , gammaglobulinas
17.
Vaccines (Basel) ; 9(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34452022

RESUMEN

Influenza B virus (IBV) is considered a major respiratory pathogen responsible for seasonal respiratory disease in humans, particularly severe in children and the elderly. Seasonal influenza vaccination is considered the most efficient strategy to prevent and control IBV infections. Live attenuated influenza virus vaccines (LAIVs) are thought to induce both humoral and cellular immune responses by mimicking a natural infection, but their effectiveness has recently come into question. Thus, the opportunity exists to find alternative approaches to improve overall influenza vaccine effectiveness. Two alternative IBV backbones were developed with rearranged genomes, rearranged M (FluB-RAM) and a rearranged NS (FluB-RANS). Both rearranged viruses showed temperature sensitivity in vitro compared with the WT type B/Bris strain, were genetically stable over multiple passages in embryonated chicken eggs and were attenuated in vivo in mice. In a prime-boost regime in naïve mice, both rearranged viruses induced antibodies against HA with hemagglutination inhibition titers considered of protective value. In addition, antibodies against NA and NP were readily detected with potential protective value. Upon lethal IBV challenge, mice previously vaccinated with either FluB-RAM or FluB-RANS were completely protected against clinical disease and mortality. In conclusion, genome re-arrangement renders efficacious LAIV candidates to protect mice against IBV.

18.
Emerg Microbes Infect ; 10(1): 1832-1848, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34427541

RESUMEN

Seasonal influenza A virus (IAV) infections are among the most important global health problems. FDA-approved antiviral therapies against IAV include neuraminidase inhibitors, M2 inhibitors, and polymerase inhibitor baloxavir. Resistance against adamantanes (amantadine and rimantadine) is widespread as virtually all IAV strains currently circulating in the human population are resistant to adamantanes through the acquisition of the S31N mutation. The neuraminidase inhibitor-resistant strains also contain the M2-S31N mutant, suggesting M2-S31N is a high-profile antiviral drug target. Here we report the development of a novel deuterium-containing M2-S31N inhibitor UAWJ280. UAWJ280 had broad-spectrum antiviral activity against both oseltamivir sensitive and -resistant influenza A strains and had a synergistic antiviral effect in combination with oseltamivir in cell culture. In vivo pharmacokinetic (PK) studies demonstrated that UAWJ280 had favourable PK properties. The in vivo mouse model study showed that UAWJ280 was effective alone or in combination with oseltamivir in improving clinical signs and survival after lethal challenge with an oseltamivir sensitive IAV H1N1 strain. Furthermore, UAWJ280 was also able to ameliorate clinical signs and increase survival when mice were challenged with an oseltamivir-resistant IAV H1N1 strain. In conclusion, we show for the first time that the M2-S31N channel blocker UAWJ280 has in vivo antiviral efficacy in mice that are infected with either oseltamivir sensitive or -resistant IAVs, and it has a synergistic antiviral effect with oseltamivir.


Asunto(s)
Anticuerpos Antivirales/sangre , Antivirales/farmacología , Antivirales/farmacocinética , Deuterio/química , Farmacorresistencia Viral , Virus de la Influenza A/efectos de los fármacos , Oseltamivir/farmacología , Proteínas de la Matriz Viral/antagonistas & inhibidores , Proteínas Viroporinas/antagonistas & inhibidores , Animales , Deuterio/farmacocinética , Deuterio/farmacología , Perros , Humanos , Virus de la Influenza A/clasificación , Células de Riñón Canino Madin Darby , Masculino , Ratones Endogámicos BALB C , Mutación , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Relación Estructura-Actividad
19.
Vaccines (Basel) ; 9(7)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34358217

RESUMEN

Influenza B virus (IBV) is a major respiratory pathogen of humans, particularly in the elderly and children, and vaccines are the most effective way to control it. In previous work, incorporation of two mutations (E580G, S660A) along with the addition of an HA epitope tag in the PB1 segment of B/Brisbane/60/2008 (B/Bris) resulted in an attenuated strain that was safe and effective as a live attenuated vaccine. A third attempted mutation (K391E) in PB1 was not always stable. Interestingly, viruses that maintained the K391E mutation were associated with the mutation E48K. To explore the contribution of the E48K mutation to stability of the K391E mutation, a vaccine candidate was generated by inserting both mutations, along with attenuating mutations E580G and S660A, in PB1 of B/Bris (B/Bris PB1att 4M). Serial passages of the B/Bris PB1att 4M vaccine candidate in eggs and MDCK indicated high stability. In silico structural analysis revealed a potential interaction between amino acids at positions 48 and 391. In mice, B/Bris PB1att 4M was safe and provided complete protection against homologous challenge. These results confirm the compensatory effect of mutation E48K to stabilize the K391E mutation, resulting in a safer, yet still protective, IBV LAIV vaccine.

20.
J Virol Methods ; 288: 114011, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152409

RESUMEN

Influenza viruses are among the most significant pathogens of humans and animals. Reverse genetics allows for the study of molecular attributes that modulate virus host range, virulence and transmission. The most common reverse genetics methods use bi-directional vectors containing a host RNA polymerase (pol) I promoter to produce virus-like RNAs and a host RNA pol II promoter to direct the synthesis of viral proteins. Given the species-dependency of the pol I promoter and virus-host interactions that influence replication of animal-origin influenza viruses in human-derived cells, we explored the potential of using the swine RNA pol I promoter (spol1) in a bi-directional vector for rescuing type A and B influenza viruses (IAV and IBV, respectively) in swine and human cells. The spol1-based bi-directional plasmid vector led to efficient rescue of IAVs of different origins (human, swine, and avian) as well as IBV in both swine- and human-origin tissue culture cells. In addition, virus rescue was successful using a recombinant bacmid containing all eight segments of a swine origin IAV. In conclusion, the spol1-based reverse genetics system is a new platform to study influenza viruses and produce swine influenza vaccines with increased transfection efficiency.


Asunto(s)
Herpesvirus Cercopitecino 1 , Vacunas contra la Influenza , Gripe Humana , Orthomyxoviridae , Animales , Humanos , Gripe Humana/prevención & control , Orthomyxoviridae/genética , ARN Polimerasa I/genética , Genética Inversa , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA