Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 295(9): 2771-2786, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31949044

RESUMEN

Research in the last decade has uncovered many new paramyxoviruses, airborne agents that cause epidemic diseases in animals including humans. Most paramyxoviruses enter epithelial cells of the airway using sialic acid as a receptor and cause only mild disease. However, others cross the epithelial barrier and cause more severe disease. For some of these viruses, the host receptors have been identified, and the mechanisms of cell entry have been elucidated. The tetrameric attachment proteins of paramyxoviruses have vastly different binding affinities for their cognate receptors, which they contact through different binding surfaces. Nevertheless, all input signals are converted to the same output: conformational changes that trigger refolding of trimeric fusion proteins and membrane fusion. Experiments with selectively receptor-blinded viruses inoculated into their natural hosts have provided insights into tropism, identifying the cells and tissues that support growth and revealing the mechanisms of pathogenesis. These analyses also shed light on diabolically elegant mechanisms used by morbilliviruses, including the measles virus, to promote massive amplification within the host, followed by efficient aerosolization and rapid spread through host populations. In another paradigm of receptor-facilitated severe disease, henipaviruses, including Nipah and Hendra viruses, use different members of one protein family to cause zoonoses. Specific properties of different paramyxoviruses, like neurotoxicity and immunosuppression, are now understood in the light of receptor specificity. We propose that research on the specific receptors for several newly identified members of the Paramyxoviridae family that may not bind sialic acid is needed to anticipate their zoonotic potential and to generate effective vaccines and antiviral compounds.


Asunto(s)
Paramyxoviridae/fisiología , Receptores Virales , Internalización del Virus , Animales , Humanos , Fusión de Membrana , Paramyxoviridae/patogenicidad , Tropismo , Acoplamiento Viral , Zoonosis
2.
J Cell Sci ; 132(16)2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31331966

RESUMEN

Here, we show that cells expressing the adherens junction protein nectin-1 capture nectin-4-containing membranes from the surface of adjacent cells in a trans-endocytosis process. We find that internalized nectin-1-nectin-4 complexes follow the endocytic pathway. The nectin-1 cytoplasmic tail controls transfer: its deletion prevents trans-endocytosis, while its exchange with the nectin-4 tail reverses transfer direction. Nectin-1-expressing cells acquire dye-labeled cytoplasmic proteins synchronously with nectin-4, a process most active during cell adhesion. Some cytoplasmic cargo remains functional after transfer, as demonstrated with encapsidated genomes of measles virus (MeV). This virus uses nectin-4, but not nectin-1, as a receptor. Epithelial cells expressing nectin-4, but not those expressing another MeV receptor in its place, can transfer infection to nectin-1-expressing primary neurons. Thus, this newly discovered process can move cytoplasmic cargo, including infectious material, from epithelial cells to neurons. We name the process nectin-elicited cytoplasm transfer (NECT). NECT-related trans-endocytosis processes may be exploited by pathogens to extend tropism. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Endocitosis , Células Epiteliales/metabolismo , Virus del Sarampión/metabolismo , Nectinas/metabolismo , Internalización del Virus , Transporte Biológico Activo/genética , Adhesión Celular/genética , Moléculas de Adhesión Celular/genética , Línea Celular , Humanos , Virus del Sarampión/genética , Nectinas/genética
3.
Virus Res ; 265: 74-79, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30853585

RESUMEN

Measles virus (MeV) is an immunosuppressive, extremely contagious RNA virus that remains a leading cause of death among children. MeV is dual-tropic: it replicates first in lymphatic tissue, causing immunosuppression, and then in epithelial cells of the upper airways, accounting for extremely efficient contagion. Efficient contagion is counter-intuitive because the enveloped MeV particles are large and relatively unstable. However, MeV particles can contain multiple genomes, which can code for proteins with different functional characteristics. These proteins can cooperate to promote virus spread in tissue culture, prompting the question of whether multi-genome MeV transmission may promote efficient MeV spread also in vivo. Consistent with this hypothesis, in well-differentiated primary human airway epithelia large genome populations spread rapidly through intercellular pores. In another line of research, it was shown that distinct lymphocytic-adapted and epithelial-adapted genome populations exist; cyclical adaptation studies indicate that suboptimal variants in one environment may constitute a low frequency reservoir for adaptation to the other environment. Altogether, these observations suggest that, in humans, MeV spread relies on en bloc genome transmission, and that genomic diversity is instrumental for rapid MeV dissemination within hosts.


Asunto(s)
Células Epiteliales/virología , Genoma Viral , Virus del Sarampión/genética , Sarampión/transmisión , Mucosa Respiratoria/virología , Células Cultivadas , Variación Genética , Humanos , Virus del Sarampión/fisiología , Receptores Virales/metabolismo , Sistema Respiratorio , Virión/metabolismo , Internalización del Virus
4.
PLoS One ; 13(9): e0204337, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30252890

RESUMEN

Influenza is a global problem infecting 5-10% of adults and 20-30% of children annually. Non-pharmaceutical interventions (NPIs) are attractive approaches to complement vaccination in the prevention and reduction of influenza. Strong cyclical reduction of absolute humidity has been associated with influenza outbreaks in temperate climates. This study tested the hypothesis that raising absolute humidity above seasonal lows would impact influenza virus survival and transmission in a key source of influenza virus distribution, a community school. Air samples and objects handled by students (e.g. blocks and markers) were collected from preschool classrooms. All samples were processed and PCR used to determine the presence of influenza virus and its amount. Additionally samples were tested for their ability to infect cells in cultures. We observed a significant reduction (p < 0.05) in the total number of influenza A virus positive samples (air and fomite) and viral genome copies upon humidification as compared to control rooms. This suggests the future potential of artificial humidification as a possible strategy to control influenza outbreaks in temperate climates. There were 2.3 times as many ILI cases in the control rooms compared to the humidified rooms, and whether there is a causal relationship, and its direction between the number of cases and levels of influenza virus in the rooms is not known. Additional research is required, but this is the first prospective study suggesting that exogenous humidification could serve as a scalable NPI for influenza or other viral outbreaks.


Asunto(s)
Humedad , Virus de la Influenza A/fisiología , Gripe Humana/prevención & control , Aire , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA