Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 326(6): C1769-C1775, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682238

RESUMEN

We recently demonstrated that acute oral ketone monoester intake induces a stimulation of postprandial myofibrillar protein synthesis rates comparable to that elicited following the ingestion of 10 g whey protein or their coingestion. The present investigation aimed to determine the acute effects of ingesting a ketone monoester, whey protein, or their coingestion on mechanistic target of rapamycin (mTOR)-related protein-protein colocalization and intracellular trafficking in human skeletal muscle. In a randomized, double-blind, parallel group design, 36 healthy recreationally active young males (age: 24.2 ± 4.1 yr) ingested either: 1) 0.36 g·kg-1 bodyweight of the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET + PRO). Muscle biopsies were obtained in the overnight postabsorptive state (basal conditions), and at 120 and 300 min in the postprandial period for immunofluorescence assessment of protein translocation and colocalization of mTOR-related signaling molecules. All treatments resulted in a significant (Interaction: P < 0.0001) decrease in tuberous sclerosis complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) colocalization at 120 min versus basal; however, the decrease was sustained at 300 min versus basal (P < 0.0001) only in KET + PRO. PRO and KET + PRO increased (Interaction: P < 0.0001) mTOR-Rheb colocalization at 120 min versus basal; however, KET + PRO resulted in a sustained increase in mTOR-Rheb colocalization at 300 min that was greater than KET and PRO. Treatment intake increased mTOR-wheat germ agglutinin (WGA) colocalization at 120 and 300 min (Time: P = 0.0031), suggesting translocation toward the fiber periphery. These findings demonstrate that ketone monoester intake can influence the spatial mechanisms involved in the regulation of mTORC1 in human skeletal muscle.NEW & NOTEWORTHY We explored the effects of a ketone monoester (KET), whey protein (PRO), or their coingestion (KET + PRO) on mTOR-related protein-protein colocalization and intracellular trafficking in human muscle. All treatments decreased TSC2-Rheb colocalization at 120 minutes; however, KET + PRO sustained the decrease at 300 min. Only PRO and KET + PRO increased mTOR-Rheb colocalization; however, the increase at 300 min was greater in KET + PRO. Treatment intake increased mTOR-WGA colocalization, suggesting translocation to the fiber periphery. Ketone bodies influence the spatial regulation of mTOR.


Asunto(s)
Músculo Esquelético , Transporte de Proteínas , Serina-Treonina Quinasas TOR , Proteína de Suero de Leche , Humanos , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/administración & dosificación , Masculino , Serina-Treonina Quinasas TOR/metabolismo , Adulto Joven , Adulto , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Método Doble Ciego , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Periodo Posprandial , Cetonas/metabolismo , Proteínas Musculares/metabolismo
2.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555380

RESUMEN

Autosomal Recessive Spastic Ataxia of the Charlevoix Saguenay (ARSACS) is caused by mutation in the SACS gene resulting in loss of function of the protein sacsin. A key feature is the formation of abnormal bundles of neurofilaments (NF) in neurons and vimentin intermediate filaments (IF) in cultured fibroblasts, suggesting a role of sacsin in IF homeostasis. Sacsin contains a J domain (SacsJ) homologous to Hsp40, that can interact with Hsp70 chaperones. The SacsJ domain resolved NF bundles in cultured Sacs-/- neurons. Having studied the mechanism using NF assembled in vitro from purified NF proteins, we report that the SacsJ domain interacts with NF proteins to disassemble NFL filaments, and to inhibit their initial assembly. A cell-penetrating peptide derived from this domain, SacsJ-myc-TAT was efficient in disassembling NF bundles in cultured Sacs-/- motor neurons, restoring the NF network; however, there was some loss of vimentin IF and NF in cultured Sacs+/+ fibroblasts and motor neurons, respectively. These results suggest that sacsin through its SacsJ domain is a key regulator of NF and vimentin IF networks in cells.


Asunto(s)
Proteínas de Choque Térmico , Filamentos Intermedios , Humanos , Proteínas de Choque Térmico/metabolismo , Filamentos Intermedios/metabolismo , Neuronas Motoras/metabolismo , Espasticidad Muscular/genética , Espasticidad Muscular/metabolismo , Mutación , Vimentina/genética , Vimentina/metabolismo
3.
Mol Genet Metab ; 133(1): 1-7, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33744096

RESUMEN

Mutations in the HADHB gene lead to Mitochondrial Trifunctional Protein (MTP) deficiency. MTP deficiency is a rare autosomal recessive disorder affecting long-chain fatty acid oxidation. Patients affected by MTP deficiency are unable to metabolize long-chain fatty-acids and suffer a variety of symptoms exacerbated during fasting. The three phenotypes associated with complete MTP deficiency are an early-onset cardiomyopathy and early death, an intermediate form with recurrent hypoketotic hypoglycemia and a sensorimotor neuropathy with episodic rhabdomyolysis with small amount of residual enzyme activities. This review aims to discuss the pathophysiological mechanisms and clinical manifestations of each phenotype, which appears different and linked to HADHB expression levels. Notably, the pathophysiology of the sensorimotor neuropathy is relatively unknown and we provide a hypothesis on the qualitative aspect of the role of acylcarnitine buildup in Schwann cells in MTP deficiency patients. We propose that acylcarnitine may exit the Schwann cell and alter membrane properties of nearby axons leading to axonal degeneration based on recent findings in different metabolic disorders.


Asunto(s)
Cardiomiopatías/genética , Errores Innatos del Metabolismo Lipídico/genética , Miopatías Mitocondriales/genética , Subunidad beta de la Proteína Trifuncional Mitocondrial/genética , Proteína Trifuncional Mitocondrial/deficiencia , Proteína Trifuncional Mitocondrial/genética , Enfermedades del Sistema Nervioso/genética , Rabdomiólisis/genética , Cardiomiopatías/patología , Humanos , Errores Innatos del Metabolismo Lipídico/patología , Miopatías Mitocondriales/patología , Mutación/genética , Enfermedades del Sistema Nervioso/patología , Fenotipo , Rabdomiólisis/patología
4.
FASEB J ; 33(2): 2982-2994, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30332300

RESUMEN

Loss of sacsin, a large 520 kDa multidomain protein, causes autosomal recessive spastic ataxia of the Charlevoix-Saguenay, one of the most common childhood-onset recessive ataxias. A prominent feature is abnormal bundling of neurofilaments in many neuronal populations. This study shows the direct involvement of sacsin domains in regulating intermediate filament assembly and dynamics and identifies important domains for alleviating neurofilament bundles in neurons lacking sacsin. Peptides encoding sacsin internal repeat (SIRPT) 1, J-domains, and ubiquitin-like domain modified neurofilament assembly in vivo. The domains with chaperone homology, the SIRPT and the J-domain, had opposite effects, promoting and preventing filament assembly, respectively. In cultured Sacs-/- motor neurons, both the SIRPT1 and J-domain resolved preexisting neurofilament bundles. Increasing expression of heat shock proteins also resolved neurofilament bundles, indicating that this endogenous chaperone system can compensate to some extent for sacsin deficiency.-Gentil, B. J., Lai, G.-T., Menade, M., Larivière, R., Minotti, S., Gehring, K., Chapple, J.-P., Brais, B., Durham, H. D. Sacsin, mutated in the ataxia ARSACS, regulates intermediate filament assembly and dynamics.


Asunto(s)
Fibroblastos/patología , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/fisiología , Filamentos Intermedios/patología , Neuronas Motoras/patología , Espasticidad Muscular/patología , Mutación , Ataxias Espinocerebelosas/congénito , Animales , Células Cultivadas , Fibroblastos/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Filamentos Intermedios/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/metabolismo , Espasticidad Muscular/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
5.
Hum Mol Genet ; 26(21): 4142-4152, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973294

RESUMEN

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease with paralysis resulting from dysfunction and loss of motor neurons. A common neuropathological finding is attrition of motor neuron dendrites, which make central connections vital to motor control. The chromatin remodelling complex, neuronal Brahma-related gene 1 (Brg1)-associated factor complex (nBAF), is critical for neuronal differentiation, dendritic extension and synaptic function. We have identified loss of the crucial nBAF subunits Brg1, Brg1-associated factor 53b and calcium responsive transactivator in cultured motor neurons expressing FUS or TAR-DNA Binding Protein 43 (TDP-43) mutants linked to familial ALS. When plasmids encoding wild-type or mutant human FUS or TDP-43 were expressed in motor neurons of dissociated spinal cord cultures prepared from E13 mice, mutant proteins in particular accumulated in the cytoplasm. Immunolabelling of nBAF subunits was reduced in proportion to loss of nuclear FUS or TDP-43 and depletion of Brg1 was associated with nuclear retention of Brg1 mRNA. Dendritic attrition (loss of intermediate and terminal dendritic branches) occurred in motor neurons expressing mutant, but not wild-type, FUS or TDP-43. This attrition was delayed by ectopic over-expression of Brg1 and was reproduced by inhibiting Brg1 activity either through genetic manipulation or treatment with the chemical inhibitor, (E)-1-(2-Hydroxyphenyl)-3-((1R, 4R)-5-(pyridin-2-yl)-2, 5-diazabicyclo[2.2.1]heptan-2-yl)prop-2-en-1-one, demonstrating the importance of Brg1 to maintenance of dendritic architecture. Loss of nBAF subunits was also documented in spinal motor neurons in autopsy tissue from familial amyotrophic sclerosis (chromosome 9 open reading frame 72 with G4C2 nucleotide expansion) and from sporadic cases with no identified mutation, pointing to dysfunction of nBAF chromatin remodelling in multiple forms of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Ensamble y Desensamble de Cromatina/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Ensamble y Desensamble de Cromatina/genética , Citoplasma/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Neuronas Motoras/metabolismo , Mutación , Neuronas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Subunidades de Proteína , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Médula Espinal/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Hum Mol Genet ; 26(16): 3130-3143, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28535259

RESUMEN

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in the gene SACS, encoding the 520 kDa protein sacsin. Although sacsin's physiological role is largely unknown, its sequence domains suggest a molecular chaperone or protein quality control function. Consequences of its loss include neurofilament network abnormalities, specifically accumulation and bundling of perikaryal and dendritic neurofilaments. To investigate if loss of sacsin affects intermediate filaments more generally, the distribution of vimentin was analysed in ARSACS patient fibroblasts and in cells where sacsin expression was reduced. Abnormal perinuclear accumulation of vimentin filaments, which sometimes had a cage-like appearance, occurred in sacsin-deficient cells. Mitochondria and other organelles were displaced to the periphery of vimentin accumulations. Reorganization of the vimentin network occurs in vitro under stress conditions, including when misfolded proteins accumulate. In ARSACS patient fibroblasts HSP70, ubiquitin and the autophagy-lysosome pathway proteins Lamp2 and p62 relocalized to the area of the vimentin accumulation. There was no overall increase in ubiquitinated proteins, suggesting the ubiquitin-proteasome system was not impaired. There was evidence for alterations in the autophagy-lysosome pathway. Specifically, in ARSACS HDFs cellular levels of Lamp2 were elevated while levels of p62, which is degraded in autophagy, were decreased. Moreover, autophagic flux was increased in ARSACS HDFs under starvation conditions. These data show that loss of sacsin effects the organization of intermediate filaments in multiple cell types, which impacts the cellular distribution of other organelles and influences autophagic activity.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Filamentos Intermedios/metabolismo , Animales , Ataxia/genética , Técnicas de Cultivo de Célula , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Espasticidad Muscular/genética , Espasticidad Muscular/metabolismo , Proteostasis/genética , Proteostasis/fisiología , Proteínas de Unión al ARN/metabolismo , Ataxias Espinocerebelosas/congénito , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Vimentina/metabolismo
7.
Hum Mol Genet ; 24(3): 727-39, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25260547

RESUMEN

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS [MIM 270550]) is an early-onset neurodegenerative disorder caused by mutations in the SACS gene. Over 170 SACS mutations have been reported worldwide and are thought to cause loss of function of sacsin, a poorly characterized and massive 520 kDa protein. To establish an animal model and to examine the pathophysiological basis of ARSACS, we generated Sacs knockout (Sacs(-/-)) mice. Null animals displayed an abnormal gait with progressive motor, cerebellar and peripheral nerve dysfunctions highly reminiscent of ARSACS. These clinical features were accompanied by an early onset, progressive loss of cerebellar Purkinje cells followed by spinal motor neuron loss and peripheral neuropathy. Importantly, loss of sacsin function resulted in abnormal accumulation of non-phosphorylated neurofilament (NF) bundles in the somatodendritic regions of vulnerable neuronal populations, a phenotype also observed in an ARSACS brain. Moreover, motor neurons cultured from Sacs(-/-) embryos exhibited a similar NF rearrangement with significant reduction in mitochondrial motility and elongated mitochondria. The data points to alterations in the NF cytoskeleton and defects in mitochondrial dynamics as the underlying pathophysiological basis of ARSACS.


Asunto(s)
Proteínas de Choque Térmico/genética , Mitocondrias/patología , Neuronas Motoras/patología , Espasticidad Muscular/fisiopatología , Células de Purkinje/patología , Ataxias Espinocerebelosas/congénito , Animales , Modelos Animales de Enfermedad , Proteínas de Choque Térmico/metabolismo , Humanos , Filamentos Intermedios/patología , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Espasticidad Muscular/genética , Células de Purkinje/metabolismo , Tractos Piramidales/patología , Columna Vertebral/patología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/fisiopatología , Técnicas de Cultivo de Tejidos
8.
Cell Tissue Res ; 360(3): 609-20, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25567110

RESUMEN

Neurons are extremely polarised cells in which the cytoskeleton, composed of microtubules, microfilaments and neurofilaments, plays a crucial role in maintaining structure and function. Neurofilaments, the 10-nm intermediate filaments of neurons, provide structure and mechanoresistance but also provide a scaffolding for the organization of the nucleus and organelles such as mitochondria and ER. Disruption of neurofilament organization and expression or metabolism of neurofilament proteins is characteristic of certain neurological syndromes including Amyotrophic Lateral Sclerosis, Charcot-Marie-Tooth sensorimotor neuropathies and Giant Axonal Neuropathy. Microfluorometric live imaging techniques have been instrumental in revealing the dynamics of neurofilament assembly and transport and their functions in organizing intracellular organelle networks. The insolubility of neurofilament proteins has limited identifying interactors by conventional biochemical techniques but yeast two-hybrid experiments have revealed new roles for oligomeric, nonfilamentous structures including vesicular trafficking. Although having long half-lives, new evidence points to degradation of subunits by the ubiquitin-proteasome system as a mechanism of normal turnover. Although certain E3-ligases ubiquitinating neurofilament proteins have been identified, the overall process of neurofilament degradation is not well understood. We review these mechanisms of neurofilament homeostasis and abnormalities in motor neuron and peripheral nerve disorders. Much remains to discover about the disruption of processes that leads to their pathological aggregation and accumulation and the relevance to pathogenesis. Understanding these mechanisms is crucial for identifying novel therapeutic strategies.


Asunto(s)
Filamentos Intermedios/metabolismo , Enfermedades del Sistema Nervioso/patología , Animales , Humanos , Neuronas/patología , Especificidad de Órganos
9.
J Neurochem ; 130(3): 455-66, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24716897

RESUMEN

Excitotoxicity and disruption of Ca(2+) homeostasis have been implicated in amyotrophic lateral sclerosis (ALS) and limiting Ca(2+) entry is protective in models of ALS caused by mutation of SOD1. Lomerizine, an antagonist of L- and T-type voltage-gated calcium channels and transient receptor potential channel 5 transient receptor potential channels, is well tolerated clinically, making it a potential therapeutic candidate. Lomerizine reduced glutamate excitotoxicity in cultured motor neurons by reducing the accumulation of cytoplasmic Ca(2+) and protected motor neurons against multiple measures of mutant SOD1 toxicity: Ca(2+) overload, impaired mitochondrial trafficking, mitochondrial fragmentation, formation of mutant SOD1 inclusions, and loss of viability. To assess the utility of lomerizine in other forms of ALS, calcium homeostasis was evaluated in culture models of disease because of mutations in the RNA-binding proteins transactive response DNA-binding protein 43 (TDP-43) and Fused in Sarcoma (FUS). Calcium did not play the same role in the toxicity of these mutant proteins as with mutant SOD1 and lomerizine failed to prevent cytoplasmic accumulation of mutant TDP-43, a hallmark of its pathology. These experiments point to differences in the pathogenic pathways between types of ALS and show the utility of primary culture models in comparing those mechanisms and effectiveness of therapeutic strategies.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Neuronas Motoras/efectos de los fármacos , Fármacos Neuroprotectores , Piperazinas/farmacología , Superóxido Dismutasa/genética , Superóxido Dismutasa/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Calcio/metabolismo , Calcio/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Técnicas de Transferencia de Gen , Homeostasis/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Cuerpos de Inclusión/metabolismo , Ratones , Mitocondrias/enzimología , Mitocondrias/genética , Neuronas Motoras/metabolismo , Mutación/genética , Mutación/fisiología , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Superóxido Dismutasa-1
10.
J Neurochem ; 131(5): 588-601, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25113441

RESUMEN

Peripherin is a type III intermediate filament protein, the expression of which is associated with the acquisition and maintenance of a terminally differentiated neuronal phenotype. Peripherin up-regulation occurs during acute neuronal injury and in degenerating motor neurons of amyotrophic lateral sclerosis. The functional role(s) of peripherin during normal, injurious, and disease conditions remains unknown, but may be related to differential expression of spliced isoforms. To better understand peripherin function, we performed a yeast two-hybrid screen on a mouse brain cDNA library using an assembly incompetent peripherin isoform, Per-61, as bait. We identified new peripherin interactors with roles in vesicular trafficking, signal transduction, DNA/RNA processing, protein folding, and mitochondrial metabolism. We focused on the interaction of Per-61 and the constitutive isoform, Per-58, with SNAP25 interacting protein 30 (SIP30), a neuronal protein involved in SNAP receptor-dependent exocytosis. We found that peripherin and SIP30 interacted through coiled-coil domains and colocalized in cytoplasmic aggregates in SW13vim(-) cells. Interestingly, Per-61 and Per-58 differentially altered the subcellular distribution of SIP30 and SNAP25 in primary motor neurons. Our findings suggest a novel role of peripherin in vesicle trafficking.


Asunto(s)
Periferinas/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Fracciones Subcelulares/metabolismo , Técnicas del Sistema de Dos Híbridos , Animales , Línea Celular Transformada , Humanos , Inmunoprecipitación , Ratones , Mutación/genética , Periferinas/genética , Isoformas de Proteínas/fisiología , Estructura Terciaria de Proteína , Receptores de Lisoesfingolípidos/genética , Transfección
11.
Am J Physiol Regul Integr Comp Physiol ; 304(6): R393-406, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23364527

RESUMEN

In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment.


Asunto(s)
Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Fusión de Membrana , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
FASEB J ; 26(3): 1194-203, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22155564

RESUMEN

Intermediate filaments serve important structural roles, but other cellular functions are increasingly recognized. This study demonstrated normal function of the low-molecular-weight neurofilament protein (NFL) in mitochondrial dynamics and disruption in Charcot-Marie-Tooth disease (CMT) due to mutations in the Nefl gene. In motor neurons of spinal cord cultured from Nefl-knockout mice, mitochondrial length and the rate of fusion were decreased concomitant with increased motility. These parameters were normalized after expression of NFL(wt) on the Nefl(-/-) background, but not by overexpression of the profusion protein, mitofusin 2 (MFN2). The effects of CMT-causing NFL mutants bore similarities to and differences from Nefl knockout. In the early phase of toxicity before disruption of the neurofilament network, NFL(Q333P) and NFL(P8R) integrated into neurofilaments and had effects on mitochondria similar to those with Nefl knockout. The reduction of fusion rate by NFL(Q333P) was partly due to interference with the function of the profusion protein MFN2, which is mutated in CMT2A, functionally linking these forms of CMT. In the later phase of toxicity, mitochondria essentially stopped moving in neurons expressing NFL mutants, probably a consequence of cytoskeletal disruption. Overall, the data point to important functions of neurofilaments in mitochondrial dynamics as well as primary involvement in CMT2E/1F.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/metabolismo , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Proteínas de Neurofilamentos/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/genética , Embrión de Mamíferos , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Ganglios Espinales , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Immunoblotting , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Mitocondrias/fisiología , Peso Molecular , Neuronas Motoras/citología , Mutación , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/fisiología , Factores de Tiempo
13.
Biomolecules ; 10(6)2020 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486507

RESUMEN

In mammals, adipose tissue is an active secretory tissue that responds to mild hypothermia and as such is a genuine model to study molecular and cellular adaptive responses to cold-stress. A recent study identified a mammal-specific protein of the endoplasmic reticulum that is strongly induced in the inguinal subcutaneous white adipocyte upon exposure to cold, calsyntenin 3ß (CLSTN3ß). CLSTN3ß regulates sympathetic innervation of thermogenic adipocytes and contributes to adaptive non-shivering thermogenesis. The calcium- and zinc-binding S100B is a downstream effector in the CLSTN3ß pathways. We review, here, the literature on the transcriptional regulation of the S100b gene in adipocyte cells. We also rationalize the interactions of the S100B protein with its recognized or hypothesized intracellular (p53, ATAD3A, CYP2E1, AHNAK) and extracellular (Receptor for Advanced Glycation End products (RAGE), RPTPσ) target proteins in the context of adipocyte differentiation and adaptive thermogenesis. We highlight a chaperon-associated function for the intracellular S100B and point to functional synergies between the different intracellular S100B target proteins. A model of non-classical S100B secretion involving AHNAK/S100A10/annexin2-dependent exocytosis by the mean of exosomes is also proposed. Implications for related areas of research are noted and suggestions for future research are offered.


Asunto(s)
Adipocitos/metabolismo , Respuesta al Choque por Frío , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Termogénesis , Animales , Humanos , Subunidad beta de la Proteína de Unión al Calcio S100/genética
14.
Cells ; 9(5)2020 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429483

RESUMEN

Neurofilaments (NFs), a major cytoskeletal component of motor neurons, play a key role in the differentiation, establishment and maintenance of their morphology and mechanical strength. The de novo assembly of these neuronal intermediate filaments requires the presence of the neurofilament light subunit (NEFL), whose expression is reduced in motor neurons in amyotrophic lateral sclerosis (ALS). This study used zebrafish as a model to characterize the NEFL homologue neflb, which encodes two different isoforms via a splicing of the primary transcript (neflbE4 and neflbE3). In vivo imaging showed that neflb is crucial for proper neuronal development, and that disrupting the balance between its two isoforms specifically affects the NF assembly and motor axon growth, with resultant motor deficits. This equilibrium is also disrupted upon the partial depletion of TDP-43 (TAR DNA-binding protein 43), an RNA-binding protein encoded by the gene TARDBP that is mislocalized into cytoplasmic inclusions in ALS. The study supports the interaction of the NEFL expression and splicing with TDP-43 in a common pathway, both biologically and pathogenetically.


Asunto(s)
Proteínas de Neurofilamentos/genética , Equilibrio Postural/genética , Empalme del ARN/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Atrofia , Axones/metabolismo , Axones/patología , Línea Celular , Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Actividad Motora , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteínas de Neurofilamentos/metabolismo , Fenotipo , Polimerizacion , Homología de Secuencia de Aminoácido , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
15.
Cell Stress Chaperones ; 25(1): 173-191, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31900865

RESUMEN

Upregulation of heat shock proteins (HSPs) is an approach to treatment of neurodegenerative disorders with impaired proteostasis. Many neurons, including motor neurons affected in amyotrophic lateral sclerosis (ALS), are relatively resistant to stress-induced upregulation of HSPs. This study demonstrated that histone deacetylase (HDAC) inhibitors enable the heat shock response in cultured spinal motor neurons, in a stress-dependent manner, and can improve the efficacy of HSP-inducing drugs in murine spinal cord cultures subjected to thermal or proteotoxic stress. The effect of particular HDAC inhibitors differed with the stress paradigm. The HDAC6 (class IIb) inhibitor, tubastatin A, acted as a co-inducer of Hsp70 (HSPA1A) expression with heat shock, but not with proteotoxic stress induced by expression of mutant SOD1 linked to familial ALS. Certain HDAC class I inhibitors (the pan inhibitor, SAHA, or the HDAC1/3 inhibitor, RGFP109) were HSP co-inducers comparable to the hydroxyamine arimoclomol in response to proteotoxic stress, but not thermal stress. Regardless, stress-induced Hsp70 expression could be enhanced by combining an HDAC inhibitor with either arimoclomol or with an HSP90 inhibitor that constitutively induced HSPs. HDAC inhibition failed to induce Hsp70 in motor neurons expressing ALS-linked mutant FUS, in which the heat shock response was suppressed; yet SAHA, RGFP109, and arimoclomol did reduce loss of nuclear FUS, a disease hallmark, and HDAC inhibition rescued the DNA repair response in iPSC-derived motor neurons carrying the FUSP525Lmutation, pointing to multiple mechanisms of neuroprotection by both HDAC inhibiting drugs and arimoclomol.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Proteínas de Choque Térmico/efectos de los fármacos , Hidroxilaminas/farmacología , Neuronas Motoras/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Esclerosis Amiotrófica Lateral/genética , Animales , Células Cultivadas , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
16.
J Neuropathol Exp Neurol ; 68(6): 642-52, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19458545

RESUMEN

Mutations in NEFL encoding the light neurofilament subunit (NFL) cause Charcot-Marie-Tooth disease type 2E (CMT2E), which affects both motor and sensory neurons. We expressed the disease-causing mutants NFL and NFL in motor neurons of dissociated spinal cord-dorsal root ganglia and demonstrated that they are incorporated into the preexisting neurofilament network but eventually disrupt neurofilaments without causing significant motor neuron death. Importantly, rounding of mitochondria and reduction in axonal diameter occurred before disruption of the neurofilament network, indicating that mitochondrial dysfunction contributes to the pathogenesis of CMT2E, as well as to CMT caused by mitofusin mutations. Heat shock proteins (HSPs) are involved in the formation of the neurofilament network and in protecting cells from misfolded mutant proteins. Cotransfection of HSPB1 with mutated NEFL maintained the neurofilament network, axonal diameter, and mitochondrial length in motor neurons expressing NFL, but not NFL. Conversely, HSPA1 cotransfection was effective in motor neurons expressing NFL, but not NFL. Thus, there are NFL mutant-specific differences in the ability of individual HSPs to prevent neurofilament abnormalities, reduction in axonal caliber, and disruption of mitochondrial morphology in motor neurons. These results suggest that HSP inducers have therapeutic potential for CMT2E but that their efficacy would depend on the profile of HSPs induced and the type of NEFL mutation.


Asunto(s)
Axones/patología , Proteínas de Choque Térmico/metabolismo , Mitocondrias/patología , Neuronas Motoras/ultraestructura , Mutación , Proteínas de Neoplasias/metabolismo , Proteínas de Neurofilamentos/metabolismo , Aminoácidos/genética , Análisis de Varianza , Animales , Arginina/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Ganglios Espinales/citología , Glutamina/genética , Proteínas Fluorescentes Verdes/genética , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/genética , Ratones , Microinyecciones/métodos , Chaperonas Moleculares , Neuronas Motoras/patología , Proteínas de Neoplasias/genética , Proteínas de Neurofilamentos/genética , Prolina/genética , Médula Espinal/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección/métodos
17.
J Cell Biol ; 164(1): 133-44, 2004 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-14699089

RESUMEN

Remodelling of the plasma membrane cytoarchitecture is crucial for the regulation of epithelial cell adhesion and permeability. In Madin-Darby canine kidney cells, the protein AHNAK relocates from the cytosol to the cytosolic surface of the plasma membrane during the formation of cell-cell contacts and the development of epithelial polarity. This targeting is reversible and regulated by Ca(2+)-dependent cell-cell adhesion. At the plasma membrane, AHNAK associates as a multimeric complex with actin and the annexin 2/S100A10 complex. The S100A10 subunit serves to mediate the interaction between annexin 2 and the COOH-terminal regulatory domain of AHNAK. Down-regulation of both annexin 2 and S100A10 using an annexin 2-specific small interfering RNA inhibits the association of AHNAK with plasma membrane. In Madin-Darby canine kidney cells, down-regulation of AHNAK using AHNAK-specific small interfering RNA prevents cortical actin cytoskeleton reorganization required to support cell height. We propose that the interaction of AHNAK with the annexin 2/S100A10 regulates cortical actin cytoskeleton organization and cell membrane cytoarchitecture.


Asunto(s)
Anexina A2/metabolismo , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas S100/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Anexina A2/antagonistas & inhibidores , Anexina A2/genética , Adhesión Celular/genética , Comunicación Celular/genética , Línea Celular Tumoral , Membrana Celular/ultraestructura , Polaridad Celular/genética , Tamaño de la Célula/genética , Citosol/metabolismo , Citosol/ultraestructura , Perros , Regulación hacia Abajo/genética , Células Epiteliales/ultraestructura , Humanos , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Sustancias Macromoleculares , Estructura Terciaria de Proteína/genética , ARN Interferente Pequeño
18.
J Neuropathol Exp Neurol ; 76(9): 789-799, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28859335

RESUMEN

Mutations in FIG4, coding for a phosphoinositol(3,5) bisphosphate 5' phosphatase and involved in vesicular trafficking and fusion, have been shown causing a recessive form of Charcot-Marie-Tooth (CMT). We have identified a novel intronic mutation in the FIG4 in a wheel-chair bound patient presenting with a severe form of CMT4J and provide a longitudinal study. Investigations indicated a demyelinating sensorimotor polyneuropathy with diffuse active denervation and severe axonal loss. Genetic testing revealed that the patient is heterozygous for 2 FIG4 mutations, p.I41T and a T > G transversion at IVS17-10, the latter predicted to cause a splicing defect. FIG4 was severely diminished in patient's fibroblasts indicating loss-of-function. Consistent with FIG4's function in phosphoinositol homeostasis and vesicular trafficking, fibroblasts contained multiple large vacuoles and vesicular organelles were abnormally dispersed. FIG4 deficiency has implications for turnover of membrane proteins. The transient receptor cation channel, TRPV4, accumulated at the plasma membrane of patient's fibroblasts due to slow turnover. Knocking down Fig4 in murine cultured motor neurons resulted in vacuolation and cell death. Inhibiting TRPV4 activity significantly preserved viability, although not correcting vesicular trafficking. In conclusion, we demonstrate a new FIG4 intronic mutation and, importantly, a functional interaction between FIG4 and TRPV4.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Flavoproteínas/genética , Mutación/genética , Monoéster Fosfórico Hidrolasas/genética , Canales Catiónicos TRPV/metabolismo , Animales , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/farmacología , Humanos , Masculino , Ratones , Microscopía Confocal , Persona de Mediana Edad , Neuronas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Piel/patología , Médula Espinal/citología , Transfección
19.
Biochim Biophys Acta ; 1745(1): 84-100, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16085057

RESUMEN

Mutations in the ALS2 gene has recently been linked to cases of juvenile amyotrophic lateral sclerosis, juvenile primary lateral sclerosis and ascending hereditary spastic paralysis. All reported mutations predict the production of truncated forms of Alsin suggesting a loss of function mechanism for these motor neuron disorders. Here we used the tetracycline-regulated expression system to overexpress the full-length and truncated forms of Alsin in different cell lines. Alsin overexpression caused severe phenotypic changes in monkey COS-7 cells including the enlargement and accumulation of early endosomes, impairment of mitochondria trafficking and fragmentation of the Golgi apparatus. Our results further demonstrate the requirement of the Alsin VPS9 domain for occurrence of the vacuolation process and the role of Alsin as a guanine nucleotide exchange factor for Rab5. Transfected human SW13 cells exhibited an unexpected centrosomal localization for Alsin that was linked to the presence of the c-terminal part of the protein. Immunofluorescence staining revealed a colocalization of Alsin with the centrosomal markers gamma-tubulin and A kinase anchoring protein (AKAP-450). Similar results were obtained with human LA-N-2 and SK-N-SH neuronal cells. Moreover endogenous Alsin was detected in a centrosome preparation purified from human cortical brain. Considering the crucial role of centrosome in the production of microtubules required for intracellular transport, these findings are of potential relevance for unravelling the disease mechanisms linked to Alsin mutations.


Asunto(s)
Centrosoma/ultraestructura , Factores de Intercambio de Guanina Nucleótido/genética , Animales , Secuencia de Bases , Células COS , Línea Celular , Chlorocebus aethiops , Cartilla de ADN , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Enfermedad de la Neurona Motora/genética , Mutación , Reacción en Cadena de la Polimerasa , Transfección , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
20.
J Appl Physiol (1985) ; 118(9): 1161-71, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25767033

RESUMEN

The diaphragm is a unique skeletal muscle designed to be rhythmically active throughout life, such that its sustained inactivation by the medical intervention of mechanical ventilation (MV) represents an unanticipated physiological state in evolutionary terms. Within a short period after initiating MV, the diaphragm develops muscle atrophy, damage, and diminished strength, and many of these features appear to arise from mitochondrial dysfunction. Notably, in response to metabolic perturbations, mitochondria fuse, divide, and interact with neighboring organelles to remodel their shape and functional properties-a process collectively known as mitochondrial dynamics. Using a quantitative electron microscopy approach, here we show that diaphragm contractile inactivity induced by 6 h of MV in mice leads to fragmentation of intermyofibrillar (IMF) but not subsarcolemmal (SS) mitochondria. Furthermore, physical interactions between adjacent organellar membranes were less abundant in IMF mitochondria during MV. The profusion proteins Mfn2 and OPA1 were unchanged, whereas abundance and activation status of the profission protein Drp1 were increased in the diaphragm following MV. Overall, our results suggest that mitochondrial morphological abnormalities characterized by excessive fission-fragmentation represent early events during MV, which could potentially contribute to the rapid onset of mitochondrial dysfunction, maladaptive signaling, and associated contractile dysfunction of the diaphragm.


Asunto(s)
Diafragma/fisiología , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Animales , Diafragma/metabolismo , Dinaminas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Respiración Artificial/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA