Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849372

RESUMEN

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Asunto(s)
Desaminasas APOBEC/genética , Neoplasias/genética , Desaminasas APOBEC/metabolismo , Línea Celular , Línea Celular Tumoral , ADN/metabolismo , Análisis Mutacional de ADN/métodos , Bases de Datos Genéticas , Exoma , Genoma Humano/genética , Xenoinjertos , Humanos , Mutagénesis , Mutación/genética , Tasa de Mutación , Retroelementos , Secuenciación del Exoma/métodos
2.
Bioessays ; 46(7): e2300210, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38715516

RESUMEN

Understanding the influence of cis-regulatory elements on gene regulation poses numerous challenges given complexities stemming from variations in transcription factor (TF) binding, chromatin accessibility, structural constraints, and cell-type differences. This review discusses the role of gene regulatory networks in enhancing understanding of transcriptional regulation and covers construction methods ranging from expression-based approaches to supervised machine learning. Additionally, key experimental methods, including MPRAs and CRISPR-Cas9-based screening, which have significantly contributed to understanding TF binding preferences and cis-regulatory element functions, are explored. Lastly, the potential of machine learning and artificial intelligence to unravel cis-regulatory logic is analyzed. These computational advances have far-reaching implications for precision medicine, therapeutic target discovery, and the study of genetic variations in health and disease.


Asunto(s)
Sistemas CRISPR-Cas , Redes Reguladoras de Genes , Aprendizaje Automático , Humanos , Sistemas CRISPR-Cas/genética , Biología Computacional/métodos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica/genética , Animales , Elementos Reguladores de la Transcripción/genética
3.
BMC Genomics ; 24(1): 768, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087204

RESUMEN

Early detection of human disease is associated with improved clinical outcomes. However, many diseases are often detected at an advanced, symptomatic stage where patients are past efficacious treatment periods and can result in less favorable outcomes. Therefore, methods that can accurately detect human disease at a presymptomatic stage are urgently needed. Here, we introduce "frequentmers"; short sequences that are specific and recurrently observed in either patient or healthy control samples, but not in both. We showcase the utility of frequentmers for the detection of liver cirrhosis using metagenomic Next Generation Sequencing data from stool samples of patients and controls. We develop classification models for the detection of liver cirrhosis and achieve an AUC score of 0.91 using ten-fold cross-validation. A small subset of 200 frequentmers can achieve comparable results in detecting liver cirrhosis. Finally, we identify the microbial organisms in liver cirrhosis samples, which are associated with the most predictive frequentmer biomarkers.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Cirrosis Hepática , Humanos , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/genética , Estado de Salud , Metagenoma , Metagenómica , Sensibilidad y Especificidad
4.
Nucleic Acids Res ; 49(1): e4, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33211865

RESUMEN

DNA strand asymmetries can have a major effect on several biological functions, including replication, transcription and transcription factor binding. As such, DNA strand asymmetries and mutational strand bias can provide information about biological function. However, a versatile tool to explore this does not exist. Here, we present Asymmetron, a user-friendly computational tool that performs statistical analysis and visualizations for the evaluation of strand asymmetries. Asymmetron takes as input DNA features provided with strand annotation and outputs strand asymmetries for consecutive occurrences of a single DNA feature or between pairs of features. We illustrate the use of Asymmetron by identifying transcriptional and replicative strand asymmetries of germline structural variant breakpoints. We also show that the orientation of the binding sites of 45% of human transcription factors analyzed have a significant DNA strand bias in transcribed regions, that is also corroborated in ChIP-seq analyses, and is likely associated with transcription. In summary, we provide a novel tool to assess DNA strand asymmetries and show how it can be used to derive new insights across a variety of biological disciplines.


Asunto(s)
Biología Computacional/métodos , Replicación del ADN/genética , ADN/genética , Mutación , Transcripción Genética/genética , Células A549 , Algoritmos , Línea Celular Transformada , ADN/química , ADN/metabolismo , Células Hep G2 , Humanos , Células K562 , Células MCF-7 , Modelos Genéticos , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047684

RESUMEN

Cancer is one of the leading causes of death in the world; therefore, extensive research has been dedicated to exploring potential therapeutics, including immune checkpoint inhibitors (ICIs). Initially, programmed-death ligand-1 was the biomarker utilized to predict the efficacy of ICIs. However, its heterogeneous expression in the tumor microenvironment, which is critical to cancer progression, promoted the exploration of the tumor mutation burden (TMB). Research in various cancers, such as melanoma and lung cancer, has shown an association between high TMB and response to ICIs, increasing its predictive value. However, the TMB has failed to predict ICI response in numerous other cancers. Therefore, future research is needed to analyze the variations between cancer types and establish TMB cutoffs in order to create a more standardized methodology for using the TMB clinically. In this review, we aim to explore current research on the efficacy of the TMB as a biomarker, discuss current approaches to overcoming immunoresistance to ICIs, and highlight new trends in the field such as liquid biopsies, next generation sequencing, chimeric antigen receptor T-cell therapy, and personalized tumor vaccines.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Mutación , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética , Microambiente Tumoral/genética
6.
Cancer Immunol Immunother ; 70(11): 3137-3154, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33779796

RESUMEN

BACKGROUND: Skin melanoma is a highly immunogenic cancer. The intratumoral immune cytolytic activity (CYT) reflects the ability of cytotoxic T and NK cells to eliminate cancer cells, and is associated with improved patient survival. Despite the enthusiastic clinical results seen in advanced-stage metastatic melanoma patients treated with immune checkpoint inhibitors, a subgroup of them will later relapse and develop acquired resistance. We questioned whether CYT associates with different genomic profiles and thus, patient outcome, in skin melanoma. METHODS: We explored the TCGA-SKCM dataset and stratified patients to distinct subgroups of cytolytic activity. The tumor immune contexture, somatic mutations and recurrent copy number aberrations were calculated using quanTIseq, MutSigCV and GISTIC2. Chromothriptic events were explored using CTLPScanner and cancer neoepitopes were predicted with antigen garnish. Each tumor's immunophenoscore was calculated using Immunophenogram. Mutational signatures and kataegis were explored using SigProfiler and compared to the known single or doublet base substitution signatures from COSMIC. RESULTS: Metastatic skin melanomas had significantly higher CYT levels compared to primary tumors. We assessed enrichment for immune-related gene sets within CYT-high tumors, whereas, CYT-low tumors were enriched for non-immune related gene sets. In addition, distinct mutational and neoantigen loads, primarily composed of C > T transitions, along with specific types of copy number aberrations, characterized each cytolytic subgroup. We found a broader pattern of chromothripsis across CYT-low tumors, where chromosomal regions harboring chromothriptic events, contained a higher number of cancer genes. SBS7a/b, SBS5 and SBS1 were the most prevalent mutational signatures across both cytolytic subgroups, but SBS1 differed significantly between them. SBS7a/b was mutually exclusive with SBS5 and SBS1 in both CYT subgroups. CYT-high patients had markedly higher immunophenoscore, suggesting that they should display a clinical benefit upon treatment with immune checkpoint inhibition therapy, compared to CYT-low patients. CONCLUSIONS: Overall, our data highlight the existence of distinct genomic features across cytolytic subgroups in skin melanoma, which might affect the patients' relapse rate or their acquisition of resistance to immune checkpoint inhibition therapies.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Melanoma/genética , Melanoma/inmunología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Granzimas/inmunología , Humanos , Células Asesinas Naturales/inmunología , Mutación , Perforina/inmunología , Linfocitos T Citotóxicos/inmunología , Melanoma Cutáneo Maligno
7.
Genome Res ; 28(9): 1264-1271, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104284

RESUMEN

Somatic mutations show variation in density across cancer genomes. Previous studies have shown that chromatin organization and replication time domains are correlated with, and thus predictive of, this variation. Here, we analyze 1809 whole-genome sequences from 10 cancer types to show that a subset of repetitive DNA sequences, called non-B motifs that predict noncanonical secondary structure formation can independently account for variation in mutation density. Combined with epigenetic factors and replication timing, the variance explained can be improved to 43%-76%. Approximately twofold mutation enrichment is observed directly within non-B motifs, is focused on exposed structural components, and is dependent on physical properties that are optimal for secondary structure formation. Therefore, there is mounting evidence that secondary structures arising from non-B motifs are not simply associated with increased mutation density-they are possibly causally implicated. Our results suggest that they are determinants of mutagenesis and increase the likelihood of recurrent mutations in the genome. This analysis calls for caution in the interpretation of recurrent mutations and highlights the importance of taking non-B motifs that can simply be inferred from the reference sequence into consideration in background models of mutability henceforth.


Asunto(s)
Mutagénesis , Neoplasias/genética , Motivos de Nucleótidos , ADN Forma B/química , ADN Forma B/genética , Humanos
8.
Bioinformatics ; 33(1): 137-138, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27605100

RESUMEN

MOTIVATION: With the rapid advances in DNA synthesis and sequencing technologies and the continuing decline in the associated costs, high-throughput experiments can be performed to investigate the regulatory role of thousands of oligonucleotide sequences simultaneously. Nevertheless, designing high-throughput reporter assay experiments such as massively parallel reporter assays (MPRAs) and similar methods remains challenging. RESULTS: We introduce MPRAnator, a set of tools that facilitate rapid design of MPRA experiments. With MPRA Motif design, a set of variables provides fine control of how motifs are placed into sequences, thereby allowing the investigation of the rules that govern transcription factor (TF) occupancy. MPRA single-nucleotide polymorphism design can be used to systematically examine the functional effects of single or combinations of single-nucleotide polymorphisms at regulatory sequences. Finally, the Transmutation tool allows for the design of negative controls by permitting scrambling, reversing, complementing or introducing multiple random mutations in the input sequences or motifs. AVAILABILITY AND IMPLEMENTATION: MPRAnator tool set is implemented in Python, Perl and Javascript and is freely available at www.genomegeek.com and www.sanger.ac.uk/science/tools/mpranator The source code is available on www.github.com/hemberg-lab/MPRAnator/ under the MIT license. The REST API allows programmatic access to MPRAnator using simple URLs. CONTACT: igs@sanger.ac.uk or mh26@sanger.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Reguladoras de Genes , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento/métodos , Programas Informáticos , Factores de Transcripción/metabolismo , ADN/metabolismo , Internet , Polimorfismo de Nucleótido Simple , Proyectos de Investigación
9.
Redox Biol ; 69: 102978, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38048653

RESUMEN

Iodide plays a pivotal role in thyroid homeostasis due to its crucial involvement in thyroid hormone biosynthesis. Exposure to pharmacological doses of iodide elicits in the thyroid an autoregulatory response to preserve thyroid function, as well as an antioxidant response that is mediated by the Keap1/Nrf2 signaling pathway. The objective of the present study was to investigate the transcriptional response of the thyroid to excess iodide in a background of enhanced Nrf2 signaling. Keap1 knockdown (Keap1KD) mice that have activated Nrf2 signaling were exposed or not to excess iodide in their drinking water for seven days and compared to respective wild-type mice. RNA-sequencing of individual mouse thyroids identified distinct transcriptomic patterns in response to iodide, with Keap1KD mice showing an attenuated inflammatory response, altered thyroidal autoregulation, and enhanced cell growth/proliferative signaling, as confirmed also by Western blotting for key proteins involved in antioxidant, autoregulatory and proliferative responses. These findings underscore novel gene-environment interactions between the activation status of the Keap1/Nrf2 antioxidant response system and the dietary iodide intake, which may have implications not only for the goiter phenotype of Keap1KD mice but also for humans harboring genetic variations in KEAP1 or NFE2L2 or treated with Nrf2-modulating drugs.


Asunto(s)
Antioxidantes , Glándula Tiroides , Humanos , Ratones , Animales , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Glándula Tiroides/metabolismo , Estrés Oxidativo , Yoduros/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Interacción Gen-Ambiente , Perfilación de la Expresión Génica , Homeostasis
10.
NAR Genom Bioinform ; 6(2): lqae029, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38584871

RESUMEN

The prevalence of nucleic and peptide short sequences across organismal genomes and proteomes has not been thoroughly investigated. We examined 45 785 reference genomes and 21 871 reference proteomes, spanning archaea, bacteria, eukaryotes and viruses to calculate the rarity of short sequences in them. To capture this, we developed a metric of the rarity of each sequence in nature, the rarity index. We find that the frequency of certain dipeptides in rare oligopeptide sequences is hundreds of times lower than expected, which is not the case for any dinucleotides. We also generate predictive regression models that infer the rarity of nucleic and proteomic sequences across nature or within each domain of life and viruses separately. When examining each of the three domains of life and viruses separately, the R² performance of the model predicting rarity for 5-mer peptides from mono- and dipeptides ranged between 0.814 and 0.932. A separate model predicting rarity for 10-mer oligonucleotides from mono- and dinucleotides achieved R² performance between 0.408 and 0.606. Our results indicate that the mono- and dinucleotide composition of nucleic sequences and the mono- and dipeptide composition of peptide sequences can explain a significant proportion of the variance in their frequencies in nature.

11.
Mol Metab ; : 101987, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977131

RESUMEN

The advent of liquid biopsies presents a novel, minimally invasive methodology for the detection of disease biomarkers, offering a significant advantage over traditional biopsy techniques. Particularly, the analysis of cell-free RNA (cfRNA) has garnered interest due to its dynamic expression profiles and the capability to study various RNA species, including messenger RNA (mRNA) and long non-coding RNA (lncRNA). These attributes position cfRNA as a versatile biomarker with broad potential applications in clinical research and diagnostics. This review delves into the utility of cfRNA biomarkers as prognostic tools for obesity-related comorbidities, such as diabetes, dyslipidemia, and non-alcoholic fatty liver disease. We evaluate the efficacy of cfRNA in forecasting metabolic outcomes associated with obesity and in identifying patients likely to experience favorable clinical outcomes following bariatric surgery. Additionally, this review synthesizes evidence from studies examining circulating cfRNA across different physiological and pathological states, with a focus on its role in diabetes, including disease progression monitoring and treatment efficacy assessment. Through this exploration, we underscore the emerging relevance of cfRNA signatures in the context of obesity and its comorbidities, setting the stage for future investigative efforts in this rapidly advancing domain.

12.
Eur J Cancer ; 196: 113421, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952501

RESUMEN

Early diagnosis of cancer can significantly improve survival of cancer patients; however sensitive and highly specific biomarkers for cancer detection are currently lacking for most cancer types. Nullpeptides are short peptides that are absent from the human proteome. Here, we examined the emergence of nullpeptides during cancer development. We analyzed 3,600,964 somatic mutations across 10,064 whole exome sequencing tumor samples spanning 32 cancer types. We analyze RNA-seq data from primary tumor samples to identify the subset of nullpeptides that emerge in highly expresed genes. We show that nullpeptides, and particularly the subset that is highly recurrent across cancer patients, can be identified in tumor biopsy samples. We find that cancer genes show an excess of nullpeptides and detect nullpeptide hotspots in specific loci of oncogenes and tumor suppressors. We also observe that recurrent nullpeptides are more likely to be found in neoantigens, which have been shown to be effective targets for immunotherapy, suggesting that they can be used to prioritize candidates. Our findings provide evidence for the utility of nullpeptides as cancer detection and therapeutic biomarkers.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Oncogenes , Péptidos/genética , Inmunoterapia , Biomarcadores , Mutación , Antígenos de Neoplasias
13.
Nat Genet ; 56(1): 23-26, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036782

RESUMEN

The chemotherapeutic agent CX-5461, or pidnarulex, has been fast-tracked by the United States Food and Drug Administration for early-stage clinical studies of BRCA1-, BRCA2- and PALB2-mutated cancers. It is under investigation in phase I and II trials. Here, we find that, although CX-5461 exhibits synthetic lethality in BRCA1-/BRCA2-deficient cells, it also causes extensive, nonselective, collateral mutagenesis in all three cell lines tested, to magnitudes that exceed known environmental carcinogens.


Asunto(s)
Mutágenos , Neoplasias , Humanos , Mutágenos/toxicidad , Proteína BRCA1/genética , Proteína BRCA2/genética , Benzotiazoles/uso terapéutico , Naftiridinas , Neoplasias/tratamiento farmacológico
14.
Front Immunol ; 15: 1362780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487527

RESUMEN

Dengue, caused by the dengue virus (DENV), affects millions of people worldwide every year. This virus has two distinct life cycles, one in the human and another in the mosquito, and both cycles are crucial to be controlled. To control the vector of DENV, the mosquito Aedes aegypti, scientists employed many techniques, which were later proved ineffective and harmful in many ways. Consequently, the attention shifted to the development of a vaccine; researchers have targeted the E protein, a surface protein of the virus and the NS1 protein, an extracellular protein. There are several types of vaccines developed so far, such as live attenuated vaccines, recombinant subunit vaccines, inactivated virus vaccines, viral vectored vaccines, DNA vaccines, and mRNA vaccines. Along with these, scientists are exploring new strategies of developing improved version of the vaccine by employing recombinant DNA plasmid against NS1 and also aiming to prevent the infection by blocking the DENV life cycle inside the mosquitoes. Here, we discussed the aspects of research in the field of vaccines until now and identified some prospects for future vaccine developments.


Asunto(s)
Vacunas contra el Dengue , Virus del Dengue , Dengue , Vacunas de ADN , Vacunas Virales , Animales , Humanos , Virus del Dengue/genética , Mosquitos Vectores , Vacunas Atenuadas , Vacunas de Productos Inactivados
15.
Comput Struct Biotechnol J ; 23: 2289-2303, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38840832

RESUMEN

The rapid progression of genomics and proteomics has been driven by the advent of advanced sequencing technologies, large, diverse, and readily available omics datasets, and the evolution of computational data processing capabilities. The vast amount of data generated by these advancements necessitates efficient algorithms to extract meaningful information. K-mers serve as a valuable tool when working with large sequencing datasets, offering several advantages in computational speed and memory efficiency and carrying the potential for intrinsic biological functionality. This review provides an overview of the methods, applications, and significance of k-mers in genomic and proteomic data analyses, as well as the utility of absent sequences, including nullomers and nullpeptides, in disease detection, vaccine development, therapeutics, and forensic science. Therefore, the review highlights the pivotal role of k-mers in addressing current genomic and proteomic problems and underscores their potential for future breakthroughs in research.

16.
Cancer Gene Ther ; 31(6): 861-870, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351138

RESUMEN

Early detection of cancer can significantly improve patient outcomes; however, sensitive and highly specific biomarkers for cancer detection are currently missing. Nullomers are the shortest sequences that are absent from the human genome but can emerge due to somatic mutations in cancer. We examine over 10,000 whole exome sequencing matched tumor-normal samples to characterize nullomer emergence across exonic regions of the genome. We also identify nullomer emerging mutational hotspots within tumor genes. Finally, we provide evidence for the identification of nullomers in cell-free RNA from peripheral blood samples, enabling detection of multiple tumor types. We show multiple tumor classification models with an AUC greater than 0.9, including a hepatocellular carcinoma classifier with an AUC greater than 0.99.


Asunto(s)
Ácidos Nucleicos Libres de Células , Detección Precoz del Cáncer , Humanos , Detección Precoz del Cáncer/métodos , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/sangre , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Mutación , Secuenciación del Exoma/métodos
17.
Comput Struct Biotechnol J ; 23: 2011-2033, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38765606

RESUMEN

The fields of Metagenomics and Metatranscriptomics involve the examination of complete nucleotide sequences, gene identification, and analysis of potential biological functions within diverse organisms or environmental samples. Despite the vast opportunities for discovery in metagenomics, the sheer volume and complexity of sequence data often present challenges in processing analysis and visualization. This article highlights the critical role of advanced visualization tools in enabling effective exploration, querying, and analysis of these complex datasets. Emphasizing the importance of accessibility, the article categorizes various visualizers based on their intended applications and highlights their utility in empowering bioinformaticians and non-bioinformaticians to interpret and derive insights from meta-omics data effectively.

18.
Comput Struct Biotechnol J ; 23: 1919-1928, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38711760

RESUMEN

The decrease in sequencing expenses has facilitated the creation of reference genomes and proteomes for an expanding array of organisms. Nevertheless, no established repository that details organism-specific genomic and proteomic sequences of specific lengths, referred to as kmers, exists to our knowledge. In this article, we present kmerDB, a database accessible through an interactive web interface that provides kmer-based information from genomic and proteomic sequences in a systematic way. kmerDB currently contains 202,340,859,107 base pairs and 19,304,903,356 amino acids, spanning 54,039 and 21,865 reference genomes and proteomes, respectively, as well as 6,905,362 and 149,305,183 genomic and proteomic species-specific sequences, termed quasi-primes. Additionally, we provide access to 5,186,757 nucleic and 214,904,089 peptide sequences absent from every genome and proteome, termed primes. kmerDB features a user-friendly interface offering various search options and filters for easy parsing and searching. The service is available at: www.kmerdb.com.

19.
Nat Commun ; 15(1): 12, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195585

RESUMEN

Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we use integrative single-cell sequencing (scRNA-seq and scATAC-seq) on insectivorous (Eptesicus fuscus; big brown bat) and frugivorous (Artibeus jamaicensis; Jamaican fruit bat) bat kidneys and pancreases and identify key cell population, gene expression and regulatory differences associated with the Jamaican fruit bat that also relate to human disease, particularly diabetes. We find a decrease in loop of Henle and an increase in collecting duct cells, and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the Jamaican fruit bat kidney. The Jamaican fruit bat pancreas shows an increase in endocrine and a decrease in exocrine cells, and differences in genes and regulatory elements involved in insulin regulation. We also find that these frugivorous bats share several molecular characteristics with human diabetes. Combined, our work provides insights from a frugivorous mammal that could be leveraged for therapeutic purposes.


Asunto(s)
Quirópteros , Diabetes Mellitus , Humanos , Animales , Páncreas , Riñón , Células Epiteliales
20.
bioRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712228

RESUMEN

Genetic studies find hundreds of thousands of noncoding variants associated with psychiatric disorders. Massively parallel reporter assays (MPRAs) and in vivo transgenic mouse assays can be used to assay the impact of these variants. However, the relevance of MPRAs to in vivo function is unknown and transgenic assays suffer from low throughput. Here, we studied the utility of combining the two assays to study the impact of non-coding variants. We carried out an MPRA on over 50,000 sequences derived from enhancers validated in transgenic mouse assays and from multiple fetal neuronal ATAC-seq datasets. We also tested over 20,000 variants, including synthetic mutations in highly active neuronal enhancers and 177 common variants associated with psychiatric disorders. Variants with a high impact on MPRA activity were further tested in mice. We found a strong and specific correlation between MPRA and mouse neuronal enhancer activity including changes in neuronal enhancer activity in mouse embryos for variants with strong MPRA effects. Mouse assays also revealed pleiotropic variant effects that could not be observed in MPRA. Our work provides a large catalog of functional neuronal enhancers and variant effects and highlights the effectiveness of combining MPRAs and mouse transgenic assays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA