Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Apoptosis ; 25(9-10): 674-685, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32638182

RESUMEN

Costunolide, a natural sesquiterpene lactone, has multiple pharmacological activities such as neuroprotection or induction of apoptosis and eryptosis. However, the effects of costunolide on pro-survival factors and enzymes in human erythrocytes, e.g. glutathione and glucose-6-phosphate dehydrogenase (G6PDH) respectively, have not been studied yet. Our aim was to determine the mechanisms underlying costunolide-induced eryptosis and to reverse this process. Phosphatidylserine exposure was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry, and intracellular glutathione [GSH]i from high performance liquid chromatography. The oxidized status of intracellular glutathione and enzyme activities were measured by spectrophotometry. Treatment of erythrocytes with costunolide dose-dependently enhanced the percentage of annexin-V-binding cells, decreased the cell volume, depleted [GSH]i and completely inhibited G6PDH activity. The effects of costunolide on annexin-V-binding and cell volume were significantly reversed by pre-treatment of erythrocytes with the specific PKC-α inhibitor chelerythrine. The latter, however, had no effect on costunolide-induced GSH depletion. Costunolide induces eryptosis, depletes [GSH]i and inactivates G6PDH activity. Furthermore, our study reveals an inhibitory effect of chelerythrine on costunolide-induced eryptosis, indicating a relationship between costunolide and PKC-α. In addition, chelerythrine acts independently of the GSH depletion. Understanding the mechanisms of G6PDH inhibition accompanied by GSH depletion should be useful for development of anti-malarial therapeutic strategies or for synthetic lethality-based approaches to escalate oxidative stress in cancer cells for their sensitization to chemotherapy and radiotherapy.


Asunto(s)
Benzofenantridinas/farmacología , Inhibidores Enzimáticos/farmacología , Eriptosis/genética , Glucosafosfato Deshidrogenasa/genética , Proteína Quinasa C-alfa/genética , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Eriptosis/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/patología , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glutatión/genética , Humanos , Estrés Oxidativo/efectos de los fármacos , Proteína Quinasa C-alfa/antagonistas & inhibidores , Especies Reactivas de Oxígeno , Sesquiterpenos/farmacología
2.
Apoptosis ; 23(11-12): 641-650, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30238335

RESUMEN

The transcription factor p53 suppresses tumor growth by inducing nucleated cell apoptosis and cycle arrest. Because of its influence on primitive erythroid cell differentiation and survival, p53 is an important determinant of erythropoiesis. However, the impact of p53 on the fate of erythrocytes, cells lacking nucleus and mitochondria, during their post-maturation phase in the circulation remained elusive. Erythrocyte survival may be compromised by suicidal erythrocyte death or eryptosis, which is hallmarked by phosphatidylserine translocation and stimulated by increase of cytosolic Ca2+ concentration. Here, we comparatively examined erythrocyte homeostasis in p53-mutant mice (Trp53tm1Tyj/J) and in corresponding WT mice (C57BL/6J) by analyzing eryptosis and erythropoiesis. To this end, spontaneous cell membrane phosphatidylserine exposure and cytosolic Ca2+ concentration were higher in erythrocytes drawn from Trp53tm1Tyj/J mice than from WT mice. Eryptosis induced by glucose deprivation, a pathophysiological cell stressor, was slightly, but significantly more prominent in erythrocytes drawn from Trp53tm1Tyj/J mice as compared to WT mice. The loss of erythrocytes by eryptosis was fully compensated by enhanced erythropoiesis in Trp53tm1Tyj/J mice, as reflected by increased reticulocytosis and abundance of erythroid precursor cells in the bone marrow. Accordingly, erythrocyte number, packed cell volume and hemoglobin were similar in Trp53tm1Tyj/J and WT mice. Taken together, functional p53 deficiency enhances the turnover of circulating erythrocytes by parallel increase of eryptosis and stimulated compensatory erythropoiesis.


Asunto(s)
Envejecimiento Eritrocítico/genética , Eritrocitos/fisiología , Proteína p53 Supresora de Tumor/genética , Animales , Recuento de Células Sanguíneas , Calcio/metabolismo , Eriptosis/fisiología , Eritrocitos/metabolismo , Eritrocitos/patología , Eritropoyesis/fisiología , Genotipo , Glucosa/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfatidilserinas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
3.
Cell Physiol Biochem ; 42(5): 1985-1998, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28793283

RESUMEN

BACKGROUND AND PURPOSE: The high potency antipsychotic drug trifluoperazine (10-[3-(4-methyl-1-piperazinyl)-propyl]-2-(trifluoromethyl)-(10)H-phenothiazine dihydrochloride; TFP) may either counteract or promote suicidal cell death or apoptosis. Similar to apoptosis, erythrocytes may enter eryptosis, characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis can be stimulated by an increase in cytoplasmic Ca2+ concentration ([Ca2+]i) and inhibited by nitric oxide (NO). We explored whether TFP treatment of erythrocytes induces phosphatidylserine exposure, cell shrinkage, and calcium influx, whether it impairs S-nitrosylation and whether these effects are inhibited by NO. METHODS: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and protein nitrosylation from fluorescence switch of the Bodipy-TMR/Sypro Ruby signal. RESULTS: Exposure of human erythrocytes to TFP significantly enhanced the percentage of annexin-V-binding cells, raised [Ca2+]i, and decreased S-nitrosylation. The effect of TFP on annexin-V-binding was not affected by removal of extracellular Ca2+ alone, but was significantly inhibited by pre-treatment with sodium nitroprusside (SNP), an effect significantly augmented by additional removal of extracellular Ca2+. A 3 hours treatment with 0.1 µM Ca2+ ionophore ionomycin triggered annexin-V-binding and cell shrinkage, effects fully reversed by removal of extracellular Ca2+. CONCLUSIONS: TFP induces eryptosis and decreases protein S-nitrosylation, effects blunted by nitroprusside. The effect of nitroprusside is attenuated in the presence of extracellular Ca2+.


Asunto(s)
Eriptosis/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Trifluoperazina/toxicidad , Potenciales de Acción/efectos de los fármacos , Calcio/metabolismo , Tamaño de la Célula/efectos de los fármacos , Membrana Eritrocítica/efectos de los fármacos , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/fisiología , Hemólisis/efectos de los fármacos , Humanos , Ionomicina/toxicidad , Microscopía Fluorescente , Óxido Nítrico/metabolismo , Técnicas de Placa-Clamp , Fosfatidilserinas/toxicidad , Procesamiento Proteico-Postraduccional/efectos de los fármacos
5.
Cell Physiol Biochem ; 39(5): 1941-1954, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27771709

RESUMEN

BACKGROUND/AIMS: In previous publications we were able to demonstrate the exposure of phosphatidylserine (PS) in the outer membrane leaflet after activation of red blood cells (RBCs) by lysophosphatidic acid (LPA), phorbol-12 myristate-13acetate (PMA), or 4-bromo-A23187 (A23187). It has been concluded that three different mechanisms are responsible for the PS exposure in human RBCs: (i) Ca2+-stimulated scramblase activation (and flippase inhibition) by A23187, LPA, and PMA; (ii) PKCα activation by LPA and PMA; and (iii) enhanced lipid flip flop caused by LPA. Further studies aimed to elucidate interconnections between the increased Ca2+ content, scramblase- and PKCα-activation. In addition, the role of the Ca2+-activated K+ channel (Gardos channel) activity in the process of PS exposure needs to be investigated. METHODS: The intracellular Ca2+ content and the PS exposure of RBCs have been investigated after treatment with LPA (2.5 µM), PMA (6 µM), or A23187 (2 µM). Fluo-4 and annexin V-FITC has been used to detect intracellular Ca2+ content and PS exposure, respectively. Both parameters (Ca2+ content, PS exposure) were studied using flow cytometry. Inhibitors of the scramblase, the PKCα, and the Gardos channel have been applied. RESULTS: The percentage of RBCs showing PS exposure after activation with LPA, PMA, or A23187 is significantly reduced after inhibition of the scramblase using the specific inhibitor R5421 as well as after the inhibition of the PKCα using chelerythrine chloride or calphostin C. The inhibitory effect is more pronounced when the scramblase and the PKCα are inhibited simultaneously. Additionally, the inhibition of the Gardos channel using charybdotoxin resulted in a significant reduction of the percentage of RBCs showing PS exposure under all conditions measured. Similar results were obtained when the Gardos channel activity was suppressed by increased extracellular K+ content. CONCLUSION: PS exposure is mediated by the Ca2+-dependent scramblase but also by PKCα activated by LPA and PMA in a Ca2+-dependent and a Ca2+-independent manner. Furthermore, we hypothesize that a hyperpolarisation of RBCs caused by the opening of the Gardos channel is essential for the scramblase activity as well as for a fraction of the LPA-induced Ca2+ entry.


Asunto(s)
Calcimicina/farmacología , Calcio/metabolismo , Lisofosfolípidos/farmacología , Fosfatidilserinas/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Anexina A5/genética , Anexina A5/metabolismo , Benzofenantridinas/farmacología , Células Cultivadas , Caribdotoxina/farmacología , Recuento de Eritrocitos , Eritrocitos , Regulación de la Expresión Génica , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Metomil/análogos & derivados , Metomil/farmacología , Naftalenos/farmacología , Fosfatidilserinas/química , Proteínas de Transferencia de Fosfolípidos/antagonistas & inhibidores , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Transducción de Señal
6.
Cell Physiol Biochem ; 37(3): 1178-86, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26418250

RESUMEN

BACKGROUND/AIMS: The cyclin-dependent kinase 4 (CDK4) participates in the regulation of apoptosis of nucleated cells by altering transcriptional regulation of genes governing cell proliferation and cell death. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine (PS) exposure at the cell surface. As mature erythrocytes lack nuclei, acute stimulation of eryptosis cannot result from altered gene expression. Eryptosis is triggered by isotonic cell shrinkage following Cl- removal (replacement with the impermeant organic anion gluconate) or by oxidative stress (exposure to 0.3 mM tertbutyl-hydroperoxide [tBOOH]). The present study explored whether CDK4 is expressed in erythrocytes and whether the CDK4 inhibitors II (NSC625987) and III (ryuvidine) influence eryptosis. METHODS: Western blotting was utilized for determination of the presence of CDK4 protein in human erythrocytes, and FACS analysis to determine Fluo3 fluorescence (reflecting cytosolic Ca2+), annexin-V-binding (reflecting PS-exposure) and forward scatter (reflecting cell volume). RESULTS: CDK4 protein was present in human erythrocytes. Cl- removal was followed by decrease of forward scatter and increase of both annexin-V-binding and Fluo3 fluorescence, an effect significantly curtailed by CDK4 inhibitors II and III. Furthermore, CDK4 inhibition blunted enhanced PS-exposure elicited by tBOOH treatment. CONCLUSIONS: The present observations disclose the presence of CDK4 protein in human erythrocytes and the suppression of suicidal erythrocyte death by pharmacological inhibition of CDK4.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/metabolismo , Eritrocitos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis , Supervivencia Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Eritrocitos/citología , Eritrocitos/enzimología , Humanos , Fosfatidilserinas/metabolismo , terc-Butilhidroperóxido/farmacología
7.
Cell Physiol Biochem ; 32(4): 801-13, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24080940

RESUMEN

BACKGROUND/AIMS: Erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte outer membrane. Susceptibility to eryptosis is enhanced in aged erythrocytes and stimulated by NFκB-inhibitors Bay 11-7082 and parthenolide. Here we explored whether expression of NFκB and susceptibility to inhibitor-induced eryptosis is sensitive to erythrocyte age. METHODS: Human erythrocytes were separated into five fractions, based on age-associated characteristics cell density and volume. NFκB compared to ß-actin protein abundance was estimated by Western blotting and cell volume from forward scatter. Phosphatidylserine exposure was identified using annexin-V binding. RESULTS: NFκB was most abundant in young erythrocytes but virtually absent in aged erythrocytes. A 24h or 48h exposure to Ringer resulted in spontaneous decrease of forward scatter and increase of annexin V binding, effects more pronounced in aged than in young erythrocytes. Both, Bay 11-7082 (20 µM) and parthenolide (100 µM) triggered eryptosis, effects again most pronounced in aged erythrocytes. CONCLUSION: NFκB protein abundance is lowest and spontaneous eryptosis as well as susceptibility to Bay 11-7082 and parthenolide highest in aged erythrocytes. Thus, inhibition of NFκB signalling alone is not responsible for the stimulation of eryptosis by parthenolide or Bay 11-7082.


Asunto(s)
Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Nitrilos/farmacología , Sesquiterpenos/farmacología , Sulfonas/farmacología , Envejecimiento/fisiología , Apoptosis/efectos de los fármacos , Células Cultivadas , Humanos , Factores de Tiempo
8.
Cell Cycle ; 22(17): 1827-1853, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37522842

RESUMEN

Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.


Asunto(s)
Eriptosis , Donantes de Óxido Nítrico , Humanos , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/metabolismo , Nitroprusiato/farmacología , Nitroprusiato/metabolismo , Calcio/metabolismo , Acetilcisteína/farmacología , Desipramina/farmacología , Desipramina/metabolismo , Eritrocitos/metabolismo , Glutatión/metabolismo , Glutatión/farmacología , Anexinas/metabolismo , Anexinas/farmacología , Fosfatidilserinas/metabolismo , Tamaño de la Célula , Ceramidas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo
9.
Br J Haematol ; 157(5): 606-14, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22429222

RESUMEN

Mature, circulating erythrocytes undergo senescence, which limits their life span to approximately 120 d. Upon injury, erythrocytes may undergo suicidal erythrocyte death or eryptosis, which may accelerate senescence and shorten their survival. Eryptosis is defined as cell shrinkage and exposure of phosphatidylserine at the cell surface. Triggers of eryptosis include oxidative stress. The present study addresses the impact of erythrocyte age on the relative susceptibility to eryptosis. Erythrocytes were separated into five fractions, based on age-associated differences in density and volume. Cell membrane scrambling was estimated from binding of annexin V to phosphatidylserine at the erythrocyte surface, the cell volume from forward scatter, and the Ca(2+) level from Fluo-3-dependent fluorescence. In addition, glutathione (GSH) concentrations were measured by an enzymatic/colourimetric method. After 48 h incubation in Ringer solution, Annexin V binding increased significantly with erythrocyte age. The differences were not accompanied by altered GSH concentrations, but were reversed by addition of the antioxidant N-acetyl-L-cysteine in vitro. Also, N-acetyl-L-cysteine significantly prolonged the half-life of circulating mouse erythrocytes in vivo. Thus, the susceptibility to eryptosis increases with the age of the erythrocytes, and this effect is at least partially due to enhanced sensitivity to oxidative stress.


Asunto(s)
Muerte Celular/fisiología , Senescencia Celular/fisiología , Eritrocitos/metabolismo , Acetilcisteína/metabolismo , Calcio/metabolismo , Eritrocitos/patología , Glutatión/metabolismo , Humanos , Fosfatidilserinas/metabolismo
10.
Cell Mol Biol Lett ; 17(1): 11-20, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22105338

RESUMEN

Anucleated erythrocytes were long considered as oxygen-transporting cells with limited regulatory functions. Components of different nuclear signaling pathways have not been investigated in those cells, yet. Surprisingly, we repeatedly found significant amounts of transcription factors in purified erythrocyte preparations, i.e. nuclear factor κB (NFκB), and major components of the canonical NFκB signaling pathway. To investigate the functional role of NFκB signaling, the effects of the preclinical compounds Bay 11-7082 and parthenolide on the survival of highly purified erythrocytes were investigated. Interestingly, both inhibitors of the NFκB pathway triggered erythrocyte programmed cell death as demonstrated by enhanced phospholipid scrambling (phosphatidylserine exposure) and cell shrinkage. Anucleated erythrocytes are an ideal cellular model allowing the study of nongenomic mechanisms contributing to suicidal cell death. As NFκB inhibitors might also interfere with the anti-oxidative defense systems of the cell, we measured the levels of reduced glutathione (GSH) after challenge with the inhibitors. Indeed, incubation of erythrocytes with Bay 11-7082 clearly decreased erythrocyte GSH levels. In conclusion, the pharmacological inhibitors of the NFκB pathway Bay 11-7082 and parthenolide interfere with the survival of erythrocytes involving mechanisms other than disruption of NFκB-dependent gene expression. Besides affecting erythrocyte survival, NFκB inhibition and induction of erythrocyte phosphatidylserine exposure may influence blood clotting. Future studies will be aimed at discriminating between NFκB-dependent and NFκB-independent GSH-mediated effects of Bay 11-7082 and parthenolide on erythrocyte death.


Asunto(s)
Eritrocitos/metabolismo , Glutatión/metabolismo , FN-kappa B/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Inhibidor NF-kappaB alfa , FN-kappa B/antagonistas & inhibidores , Transducción de Señal
11.
Cell Physiol Biochem ; 27(1): 45-54, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21325821

RESUMEN

The preclinical compounds Bay 11-7082 and parthenolide trigger apoptosis, an effect contributing to their antiinflammatory action. The substances interfere with the activation and nuclear translocation of nuclear factor NFκB, by inhibiting NFκB directly (parthenolide) or by interfering with the inactivation of the NFκB inhibitory protein IκB-α (Bay 11-7082). Beyond that, the substances may be effective in part by nongenomic effects. Similar to apoptosis of nucleated cells, erythrocytes may undergo apoptosis-like cell death (eryptosis) characterized by cell membrane scrambling with phosphatidylserine exposure, and cell shrinkage. Thus, erythrocytes allow the study of nongenomic mechanisms contributing to suicidal cell death, e.g. Ca(2+) leakage or glutathione depletion. The present study utilized Western blotting to search for NFκB and IκB-α expression in erythrocytes, FACS analysis to determine cytosolic Ca(2+) (Fluo3 fluorescence), phosphatidylserine exposure (annexin V binding), and cell volume (forward scatter), as well as an enzymatic method to determine glutathione levels. As a result, both NFκB and IκB-α are expressed in erythrocytes. Targeting the NFκB pathway by Bay 11-7082 (IC(50) ≈ 10 µM) and parthenolide (IC(50) ≈ 30 µM) triggered suicidal erythrocyte death as shown by annexin V binding and decrease of forward scatter. Bay 11-7082 treatment further increased intracellular Ca(2+) and led to depletion of reduced glutathione. The effects of Bay 11-7082 and parthenolide on annexin V binding could be fully reversed by the antioxidant N-acetylcysteine. In conclusion, the pharmacological inhibitors of NFκB, Bay 11-7082 and parthenolide, interfere with the survival of erythrocytes involving mechanisms other than disruption of NFκB-dependent gene expression.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Apoptosis , Eritrocitos/metabolismo , FN-kappa B/metabolismo , Nitrilos/farmacología , Sesquiterpenos/farmacología , Sulfonas/farmacología , Compuestos de Anilina/química , Anexina A5/metabolismo , Calcio/metabolismo , Tamaño de la Célula , Eritrocitos/efectos de los fármacos , Glutatión/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Fosfatidilserinas/metabolismo , Unión Proteica , Transducción de Señal , Xantenos/química
12.
Cell Cycle ; 20(20): 2091-2101, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34559024

RESUMEN

Enucleated mature human erythrocytes possess NFĸBs and their upstream kinases. There is a negative correlation between eryptosis (cell death of erythrocytes) and the amount of NFĸB subunits p50 and Rel A (p65). This finding is based on the fact that young erythrocytes have the highest levels of NFĸBs and the lowest eryptosis rate, while in old erythrocytes the opposite ratio prevails. Human erythrocytes (hRBCs) effectively control the homeostasis of the cell membrane permeable anti-inflammatory signal molecule hydrogen sulfide (H2S). They endogenously produce H2S via both non-enzymic (glutathione-dependent) and enzymic processes (mercaptopyruvate sulfur transferase-dependent). They uptake H2S from diverse tissues and very effectively degrade H2S via methemoglobin (Hb-Fe3+)-catalyzed oxidation. Interestingly, a reciprocal correlation exists between the intensity of inflammatory diseases and endogenous levels of H2S. H2S deficiency has been observed in patients with diabetes, psoriasis, obesity, and chronic kidney disease (CKD). Furthermore, endogenous H2S deficiency results in impaired renal erythropoietin (EPO) production and EPO-dependent erythropoiesis. In general we can say: dynamic reciprocal interaction between tumor suppressor and oncoproteins, orchestrated and sequential activation of pro-inflammatory NFĸB heterodimers (RelA-p50) and the anti-inflammatory NFĸB-p50 homodimers for optimal inflammation response, appropriate generation, subsequent degradation of H2S etc., are prerequisites for a functioning cell and organism. Diseases arise when the fragile balance between different signaling pathways that keep each other in check is permanently disturbed. This work deals with the intact anti-inflammatory hRBCs and their role as guarantors to maintain the redox status in the physiological range, a basis for general health and well-being.


Asunto(s)
Sulfuro de Hidrógeno , Eritrocitos/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Riñón/metabolismo , FN-kappa B/metabolismo , Transducción de Señal
13.
Am J Physiol Cell Physiol ; 299(4): C791-804, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20631250

RESUMEN

The balance between GSH-levels and oxidative stress is critical for cell survival. The GSH-levels of erythrocytes are dramatically decreased during infection with Plasmodium spp. We therefore investigated the consequences of targeting GSH for erythrocyte and Plasmodium survival in vitro and in vivo using dimethylfumarate (DMF) at therapeutically established dosage. We first show that noninfected red blood cells (RBC) exposed to DMF undergo changes typical of apoptosis or eryptosis, such as cell shrinkage and cell membrane scrambling with subsequent phosphatidylserine (PS) exposure. DMF did not induce appreciable hemolysis. DMF-triggered PS exposure was mediated by intracellular GSH depletion and reversed by the antioxidative N-acetyl-l-cysteine. DMF treatment controlled intraerythrocyte DNA amplification and in vitro parasitemia of Plasmodium falciparum-infected RBC. In vivo, DMF treatment had no effect on RBC count or GSH levels in noninfected mice. Consistent with its effects on infected RBC, DMF treatment abrogated parasitemia and enhanced the survival of mice infected with Plasmodium berghei from 0% to 60%. In conclusion, DMF sensitizes the erythrocytes to the effect of Plasmodium infection on PS exposure, thus accelerating the clearance of infected erythrocytes. Accordingly, DMF treatment favorably influences the clinical course of malaria. As DMF targets mechanisms within the host cell, it is not likely to generate resistance of the pathogen.


Asunto(s)
Membrana Eritrocítica/efectos de los fármacos , Fumaratos , Glutatión/metabolismo , Inmunosupresores , Malaria , Animales , Antioxidantes/metabolismo , Dimetilfumarato , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/parasitología , Fumaratos/farmacología , Fumaratos/uso terapéutico , Humanos , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Malaria/sangre , Malaria/tratamiento farmacológico , Ratones , Fosfatidilserinas/metabolismo , Plasmodium/efectos de los fármacos , Plasmodium/metabolismo , Plasmodium/parasitología
14.
Cell Cycle ; 19(24): 3399-3405, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33305655

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19. Until now, diverse drugs have been used for the treatment of COVID-19. These drugs are associated with severe side effects, e.g. induction of erythrocyte death, named eryptosis. This massively affects the oxygen (O2) supply of the organism. Therefore, three elementary aspects should be considered simultaneously: (1) a potential drug should directly attack the virus, (2) eliminate virus-infected host cells and (3) preserve erythrocyte survival and functionality. It is known that PKC-α inhibition enhances the vitality of human erythrocytes, while it dose-dependently activates the apoptosis machinery in nucleated cells. Thus, the use of chelerythrine as a specific PKC-alpha and -beta (PKC-α/-ß) inhibitor should be a promising approach to treat people infected with SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Benzofenantridinas/farmacología , Tratamiento Farmacológico de COVID-19 , Eritrocitos/inmunología , Proteína Quinasa C beta/antagonistas & inhibidores , Proteína Quinasa C-alfa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Enfermedades Respiratorias/virología , Antivirales/efectos adversos , Antivirales/uso terapéutico , Apoptosis/efectos de los fármacos , Benzofenantridinas/efectos adversos , Benzofenantridinas/uso terapéutico , COVID-19/inmunología , COVID-19/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Virus ARN/genética , Virus ARN/metabolismo , Enfermedades Respiratorias/enzimología , Enfermedades Respiratorias/metabolismo
15.
Cell Cycle ; 18(12): 1316-1334, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31154896

RESUMEN

Mature human erythrocytes are dependent on anerobic glycolysis, i.e. catabolism (oxidation) of one glucose molecule to produce two ATP and two lactate molecules. Proliferating tumor cells mimick mature human erythrocytes to glycolytically generate two ATP molecules. They deliberately avoid or switch off their respiration, i.e. tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) machinery and consequently dispense with the production of additional 36 ATP molecules from one glucose molecule. This phenomenon is named aerobic glycolysis or Warburg effect. The present review deals with the fate of a glucose molecule after entering a mature human erythrocyte or a proliferating tumor cell and describes why it is useful for a proliferating tumor cell to imitate a mature erythrocyte. Blood consisting of plasma and cellular components (99% of the cells are erythrocytes) may be regarded as a mobile organ, constantly exercising a direct interaction with other organs. Therefore, the use of drugs, which influences the biological activity of erythrocytes, has an immediate effect on the entire organism. Abbreviations: TCA: tricarboxylic acid cycle; OXPHOS: oxidative phosphorylation; GSH: reduced state of glutathione; NFκB: Nuclear factor of kappa B; PKB (Akt): protein kinase B; NOS: nitric oxide synthase; IgG: immune globulin G; H2S: hydrogen sulfide; slanDCs: Human 6-sulfo LacNAc-expressing dendritic cells; IL-8: interleukin-8; LPS: lipopolysaccharide; ROS: reactive oxygen species; PPP: pentose phosphate pathway; NADPH: nicotinamide adenine dinucleotide phosphate hydrogen; R5P: ribose-5-phophate; NAD: nicotinamide adenine dinucleotide; FAD: flavin adenine dinucleotide; O2●-: superoxide anion; G6P: glucose 6-phosphate; HbO2: Oxyhemoglobin; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GAP: glyceraldehyde-3-phosphate; 1,3-BPG: 1,3-bis-phosphoglycerate; 2,3-BPG: 2,3-bisphosphoglycerte; PGAM1: phosphoglycerate mutase 1; 3-PG: 3-phosphoglycerate; 2-PG: 2-phosphoglycerate; MIPP1: Multiple inositol polyphosphate phosphatase; mTORC1: mammalian target of rapamycin complex 1; Ru5P: ribulose 5-phosphate; ox-PPP: oxidative branch of pentose phosphate pathway; PGK: phosphoglycerate kinase; IFN-γ: interferon-γ; LDH: lactate dehydrogenase; STAT3: signal transducer and activator of transcription 3; Rheb: Ras homolog enriched in Brain; H2O2: hydrogen peroxide; ROOH: lipid peroxide; SOD: superoxide dismutase; MRC: mitochondrial respiratory chain; MbFe2+-O2: methmyoglobin; RNR: ribonucleotide reductase; PRPP: phosphoribosylpyrophosphate; PPi: pyrophosphate; GSSG: oxidized state of glutathione; non-ox-PPP: non-oxidative branch of pentose phosphate pathway; RPI: ribose-5-phosphate isomerase; RPE: ribulose 5-phosphate 3-epimerase; X5P: xylulose 5-phosphate; TK: transketolase; TA: transaldolase; F6P: fructose-6-phosphate; AR2: aldose reductase 2; SD: sorbitol dehydrogenase; HK: hexokinase; MG: mehtylglyoxal; DHAP: dihydroxyacetone phosphate; TILs: tumor-infiltrating lymphocytes; MCTs: monocarboxylate transporters; pHi: intracellular pH; Hif-1α: hypoxia-induced factor 1; NHE1: sodium/H+ (Na+/H+) antiporter 1; V-ATPase: vacuolar-type proton ATPase; CAIX: carbonic anhydrase; CO2: carbon dioxide; HCO3-: bicarbonate; NBC: sodium/bicarbonate (Na+/HCO3-) symporter; pHe: extracellular pH; GLUT-1: glucose transporter 1; PGK-1: phosphoglycerate kinase 1.


Asunto(s)
Eritrocitos/metabolismo , Eritrocitos/patología , Glucosa/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proliferación Celular , Glucólisis , Humanos
16.
Sci Rep ; 6: 28754, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27353740

RESUMEN

In mature erythrocytes, glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) yield NADPH, a crucial cofactor of the enzyme glutathione reductase (GR) converting glutathione disulfide (GSSG) into its reduced state (GSH). GSH is essential for detoxification processes in and survival of erythrocytes. We explored whether the anti-inflammatory compounds Bay 11-7082, parthenolide and dimethyl fumarate (DMF) were able to completely deplete a common target (GSH), and to impair the function of upstream enzymes of GSH recycling and replenishment. Treatment of erythrocytes with Bay 11-7082, parthenolide or DMF led to concentration-dependent eryptosis resulting from complete depletion of GSH. GSH depletion was due to strong inhibition of G6PDH activity. Bay 11-7082 and DMF, but not parthenolide, were able to inhibit the GR activity. This approach "Inhibitors, Detection of their common target that is completely depleted or inactivated when pharmacologically relevant concentrations of each single inhibitor are applied, Subsequent functional analysis of upstream enzymes for this target" (IDS), can be applied to a broad range of inhibitors and cell types according to the selected target. The specific G6PDH inhibitory effect of these compounds may be exploited for the treatment of human diseases with high NADPH and GSH consumption rates, including malaria, trypanosomiasis, cancer or obesity.


Asunto(s)
Dimetilfumarato/farmacología , Eriptosis/efectos de los fármacos , Eritrocitos/enzimología , Glucosafosfato Deshidrogenasa , Nitrilos/farmacología , Sesquiterpenos/farmacología , Sulfonas/farmacología , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/metabolismo , Humanos
17.
Sci Rep ; 6: 30925, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27499046

RESUMEN

Putative functions of the heterotrimeric G-protein subunit Gαi2-dependent signaling include ion channel regulation, cell differentiation, proliferation and apoptosis. Erythrocytes may, similar to apoptosis of nucleated cells, undergo eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine (PS) exposure. Eryptosis may be triggered by increased cytosolic Ca(2+) activity and ceramide. In the present study, we show that Gαi2 is expressed in both murine and human erythrocytes and further examined the survival of erythrocytes drawn from Gαi2-deficient mice (Gαi2(-/-)) and corresponding wild-type mice (Gαi2(+/+)). Our data show that plasma erythropoietin levels, erythrocyte maturation markers, erythrocyte counts, hematocrit and hemoglobin concentration were similar in Gαi2(-/-) and Gαi2(+/+) mice but the mean corpuscular volume was significantly larger in Gαi2(-/-) mice. Spontaneous PS exposure of circulating Gαi2(-/-) erythrocytes was significantly lower than that of circulating Gαi2(+/+) erythrocytes. PS exposure was significantly lower in Gαi2(-/-) than in Gαi2(+/+) erythrocytes following ex vivo exposure to hyperosmotic shock, bacterial sphingomyelinase or C6 ceramide. Erythrocyte Gαi2 deficiency further attenuated hyperosmotic shock-induced increase of cytosolic Ca(2+) activity and cell shrinkage. Moreover, Gαi2(-/-) erythrocytes were more resistant to osmosensitive hemolysis as compared to Gαi2(+/+) erythrocytes. In conclusion, Gαi2 deficiency in erythrocytes confers partial protection against suicidal cell death.


Asunto(s)
Eriptosis , Eritrocitos/citología , Eritrocitos/fisiología , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Animales , Supervivencia Celular , Índices de Eritrocitos , Eritrocitos/química , Subunidad alfa de la Proteína de Unión al GTP Gi2/deficiencia , Humanos , Ratones , Ratones Noqueados , Fosfatidilserinas/análisis
18.
Sci Rep ; 5: 17316, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26611568

RESUMEN

The mitogen- and stress-activated kinase MSK1/2 plays a decisive role in apoptosis. In analogy to apoptosis of nucleated cells, suicidal erythrocyte death called eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine (PS) externalization. Here, we explored whether MSK1/2 participates in the regulation of eryptosis. To this end, erythrocytes were isolated from mice lacking functional MSK1/2 (msk(-/-)) and corresponding wild-type mice (msk(+/+)). Blood count, hematocrit, hemoglobin concentration and mean erythrocyte volume were similar in both msk(-/-) and msk(+/+) mice, but reticulocyte count was significantly increased in msk(-/-) mice. Cell membrane PS exposure was similar in untreated msk(-/-) and msk(+/+) erythrocytes, but was enhanced by pathophysiological cell stressors ex vivo such as hyperosmotic shock or energy depletion to significantly higher levels in msk(-/-) erythrocytes than in msk(+/+) erythrocytes. Cell shrinkage following hyperosmotic shock and energy depletion, as well as hemolysis following decrease of extracellular osmolarity was more pronounced in msk(-/-) erythrocytes. The in vivo clearance of autologously-infused CFSE-labeled erythrocytes from circulating blood was faster in msk(-/-) mice. The spleens from msk(-/-) mice contained a significantly greater number of PS-exposing erythrocytes than spleens from msk(+/+) mice. The present observations point to accelerated eryptosis and subsequent clearance of erythrocytes leading to enhanced erythrocyte turnover in MSK1/2-deficient mice.


Asunto(s)
Apoptosis/genética , Eritrocitos/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Animales , Índices de Eritrocitos , Eritrocitos/patología , Femenino , Expresión Génica , Hematócrito , Hemoglobinas , Hemólisis , Humanos , Masculino , Ratones , Ratones Noqueados , Fragilidad Osmótica , Presión Osmótica , Fosfatidilserinas/metabolismo , Cultivo Primario de Células , Recuento de Reticulocitos , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia
19.
Pflugers Arch ; 456(2): 293-305, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18058124

RESUMEN

Nitric oxide (NO) is known to counteract apoptosis by S-nitrosylation of protein thiol groups. NO is generated and stored in erythrocytes, which may undergo eryptosis, a suicidal cell death similar to apoptosis of nucleated cells. Eryptosis is triggered by increased cytosolic Ca2+ activity and/or ceramide and characterized by cell shrinkage and phosphatidylserine exposure at the cell surface. The present study explored whether nitric oxide could interfere with the machinery underlying eryptosis. To this end, erythrocyte phosphatidylserine exposure (annexin V-binding) and cell volume (forward scatter) were determined by flow cytometry. The Ca2+ ionophore ionomycin (0.1 microM) increased cytosolic Ca2+ activity, triggered annexin binding, and decreased forward scatter. The annexin binding and decrease of forward scatter but not the increase of cytosolic Ca2+ activity were reversed by the NO-donor nitroprusside (1 microM) and papanonoate (100 microM). Higher concentrations of nitroprusside (0.1 and 1 mM) stimulated eryptosis. Glucose depletion, exposure to C6-ceramide (3 microM), hypertonic (addition of 550 mM sucrose), and isotonic (replacement of Cl- with gluconate) cell shrinkage all triggered annexin V binding, effects all reversed by nitroprusside (1 microM). Dibutyryl-cGMP (1 mM) blunted the ionomycin- but not the ceramide-induced annexin V binding. Ionomycin decreased protein nitrosylation and thioredoxin activity, effects reversed by the NO-donor papanonoate. Clearance of erythrocytes from circulating blood was significantly faster in eNOS knockout mice than in their wild-type littermates. In conclusion, nitric oxide participates in the regulation of erythrocyte survival, an effect partially mimicked by cGMP and paralleled by alterations of protein nitrosylation and thioredoxin activity.


Asunto(s)
Apoptosis/fisiología , Membrana Eritrocítica/fisiología , Eritrocitos/fisiología , Óxido Nítrico/fisiología , Animales , Anexinas/metabolismo , Calcio/metabolismo , Ceramidas/farmacología , GMP Cíclico/fisiología , Membrana Eritrocítica/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Fluoresceínas , Colorantes Fluorescentes , Humanos , Ionomicina/farmacología , Ionóforos/farmacología , Ratones , Ratones Noqueados , Nitroprusiato/farmacología , Fosfatidilserinas/metabolismo , Succinimidas
20.
Cell Physiol Biochem ; 20(6): 1043-50, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17975306

RESUMEN

Side effects of amiodarone, an effective antiarrhythmic drug, include anemia, which may be caused by decreased formation or accelerated death of erythrocytes. Suicidal erythrocyte death (eryptosis) is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Stimulators of erythrocyte membrane scrambling include increase of cytosolic Ca2+ concentration ([Ca2+]i) following activation of Ca2+-permeable cation channels. Moreover, eryptosis is triggered by ceramide. The present study has been performed to test for an effect of amiodarone on eryptosis. Erythrocytes from healthy volunteers were exposed to amiodarone and phosphatidylserine exposure (annexin V binding), cell volume (forward scatter), [Ca2+]i (Fluo3-dependent fluorescence), and ceramide formation (anti-ceramide-FITC antibody and radioactive labelling) determined by flow cytometry. Exposure of erythrocytes to amiodarone (1 microM) increased [Ca2+]i and triggered annexin V binding, but did not significantly decrease forward scatter and did not significantly influence ceramide formation. Amiodarone augmented the increase of annexin binding following hypertonic shock (addition of 550 mM sucrose) but did not significantly alter the enhanced annexin binding following Cl- removal (replacement with gluconate). Amiodarone did not significantly modify the decrease of forward scatter following hypertonic shock or Cl- removal. The present observations disclose a novel action of amiodarone which may contribute to the side effects of the drug.


Asunto(s)
Amiodarona/farmacología , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/metabolismo , Vasodilatadores/farmacología , Anexina A5/metabolismo , Señalización del Calcio/efectos de los fármacos , Ceramidas/biosíntesis , Cloruros/aislamiento & purificación , Citometría de Flujo , Humanos , Presión Osmótica/efectos de los fármacos , Fosfatidilserinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA