Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 10(12): eadi8594, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507486

RESUMEN

Marine cloud brightening (MCB) is the deliberate injection of aerosol particles into shallow marine clouds to increase their reflection of solar radiation and reduce the amount of energy absorbed by the climate system. From the physical science perspective, the consensus of a broad international group of scientists is that the viability of MCB will ultimately depend on whether observations and models can robustly assess the scale-up of local-to-global brightening in today's climate and identify strategies that will ensure an equitable geographical distribution of the benefits and risks associated with projected regional changes in temperature and precipitation. To address the physical science knowledge gaps required to assess the societal implications of MCB, we propose a substantial and targeted program of research-field and laboratory experiments, monitoring, and numerical modeling across a range of scales.

2.
ACS Earth Space Chem ; 6(12): 2910-2918, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36561197

RESUMEN

Particle chemical composition affects aerosol optical and physical properties in ways important for the fate, transport, and impact of atmospheric particulate matter. For example, hygroscopic constituents take up water to increase the physical size of a particle, which can alter the extinction properties and atmospheric lifetime. At the collocated AERosol RObotic NETwork (AERONET) and Interagency Monitoring of PROtected Visual Environments (IMPROVE) network monitoring stations in rural Bondville, Illinois, we employ a novel cloudiness determination method to compare measured aerosol physicochemical properties on predominantly cloudy and clear sky days from 2010 to 2019. On cloudy days, aerosol optical depth (AOD) is significantly higher than on clear sky days in all seasons. Measured Ångström exponents are significantly smaller on cloudy days, indicating physically larger average particle size for the sampled populations in all seasons except winter. Mass concentrations of fine particulate matter that include estimates of aerosol liquid water (ALW) are higher on cloudy days in all seasons but winter. More ALW on cloudy days is consistent with larger particle sizes inferred from Ångström exponent measurements. Aerosol chemical composition that affects hygroscopicity plays a determining impact on cloudy versus clear sky differences in AOD, Ångström exponents, and ALW. This work highlights the need for simultaneous collocated, high-time-resolution measurements of both aerosol chemical and physical properties, in particular at cloudy times when quantitative understanding of tropospheric composition is most uncertain.

3.
Bull Am Meteorol Soc ; 100(1): 93-121, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32042201

RESUMEN

The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. The study centered on 7 round-trips of the NSF NCAR Gulfstream V (GV) between Sacramento, CA and Kona, Hawaii between 1 July and 15 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. GFS forecast trajectories were used to plan the outbound flight to Hawaii with updated forecast trajectories setting the return flight plan two days later. Two key elements of the CSET observing system were the newly developed HIAPER Cloud Radar (HCR) and the High Spectral Resolution Lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud and precipitation structures that were combined with in situ measurements of aerosol, cloud, precipitation, and turbulence properties. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale cloud-precipitation complexes, and patches of shallow cumuli in very clean environments. Ultra-clean layers observed frequently near the top of the boundary layer were often associated with shallow, optically thin, layered veil clouds. The extensive aerosol, cloud, drizzle and boundary layer sampling made over open areas of the Northeast Pacific along 2-day trajectories during CSET is unprecedented and will enable modeling studies of boundary layer cloud system evolution and the role of different processes in that evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA