Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Am Chem Soc ; 146(31): 21778-21790, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39058936

RESUMEN

In this work, we compare two structurally near-amorphous rigid-rod polymers─poly(indacenodithiophene-co-benzothiadiazole), p(IDT-BT), and poly(indacenodithiophene-co-benzopyrollodione), p(IDT-BPD)─with orders of magnitude different mobilities to understand the effect charge carrier intrachain delocalization has on electronic transport. Quantum chemical calculations show that p(IDT-BPD) has a barrier to torsion that is significantly lower than that of p(IDT-BT) and is thus more likely to have reduced conjugation lengths. We utilize absorption and photoluminescence spectroscopy to characterize energetic disorder and show that p(IDT-BPD) has higher energetic disorder. Charge modulation spectroscopy (CMS) and model calculations are used to show that charge carriers are substantially delocalized in p(IDT-BT) and occupy near-uniform energetic environments. We find that mobility activated hopping barriers are similar in these two materials. Electronic structure calculations show that both intrachain and interchain couplings of monomer units are poor enough in p(IDT-BPD) that charge carriers collapse to single IDT units and transport via a through-space tunneling mechanism. This work highlights the remarkable charge transport properties of p(IDT-BT) by showing that high mobilities are achievable on device-relevant length scales with only 1D carrier delocalization.

2.
J Chem Phys ; 156(10): 104503, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35291793

RESUMEN

Extending on the previous work by Riera et al. [J. Chem. Theory Comput. 16, 2246-2257 (2020)], we introduce a second generation family of data-driven many-body MB-nrg models for CO2 and systematically assess how the strength and anisotropy of the CO2-CO2 interactions affect the models' ability to predict vapor, liquid, and vapor-liquid equilibrium properties. Building upon the many-body expansion formalism, we construct a series of MB-nrg models by fitting one-body and two-body reference energies calculated at the coupled cluster level of theory for large monomer and dimer training sets. Advancing from the first generation models, we employ the charge model 5 scheme to determine the atomic charges and systematically scale the two-body energies to obtain more accurate descriptions of vapor, liquid, and vapor-liquid equilibrium properties. Challenges in model construction arise due to the anisotropic nature and small magnitude of the interaction energies in CO2, calling for the necessity of highly accurate descriptions of the multidimensional energy landscape of liquid CO2. These findings emphasize the key role played by the training set quality in the development of transferable, data-driven models, which, accurately representing high-dimensional many-body effects, can enable predictive computer simulations of molecular fluids across the entire phase diagram.

3.
J Chem Phys ; 156(19): 194504, 2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597630

RESUMEN

Non-polarizable empirical potentials have been proven to be incapable of capturing the mixing of methane-water mixtures at elevated pressures. Although density functional theory-based ab initio simulations may circumvent this discrepancy, they are limited in terms of the relevant time and length scales associated with mixing phenomena. Here, we show that the many-body MB-nrg potential, designed to reproduce methane-water interactions with coupled cluster accuracy, successfully captures this phenomenon up to 3 GPa and 500 K with varying methane concentrations. Two-phase simulations and long time scales that are required to fully capture the mixing, affordable due to the speed and accuracy of the MBX software, are assessed. Constructing the methane-water equation of state across the phase diagram shows that the stable mixtures are denser than the sum of their parts at a given pressure and temperature. We find that many-body polarization plays a central role, enhancing the induced dipole moments of methane by 0.20 D during mixing under pressure. Overall, the mixed system adopts a denser state, which involves a significant enthalpic driving force as elucidated by a systematic many-body energy decomposition analysis.

4.
J Sep Sci ; 45(12): 2024-2033, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35353929

RESUMEN

This paper discusses ultrahigh-speed, ultrahigh-resolution preparative protein separation using an in-house designed membrane chromatography device. The performance of the membrane chromatography device was systematically compared with an equivalent resin-packed preparative column. Experiments carried out using model proteins showed that membrane chromatography gave more than four times greater resolution than the preparative column, while at the same time being more than 19 times faster. Membrane chromatography was therefore a better option, not only in terms of higher productivity but also in terms of higher product purity. Membrane chromatography was also superior in terms of resolving and presenting tracer impurity peaks in the chromatogram. Experiments carried out using monoclonal antibody samples showed that membrane chromatography was suitable for ultrahigh speed, and ultrahigh resolution fractionation of charge variants. This paper highlights and explains the need for proper device design for enabling the use of membrane chromatography for the efficient purification of protein biopharmaceuticals.


Asunto(s)
Productos Biológicos , Anticuerpos Monoclonales , Cromatografía/métodos
5.
Acc Chem Res ; 53(10): 2201-2211, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33035054

RESUMEN

ConspectusExcitons and polarons play a central role in the electronic and optical properties of organic semiconducting polymers and molecular aggregates and are of fundamental importance in understanding the operation of organic optoelectronic devices such as solar cells and light-emitting diodes. For many conjugated organic molecules and polymers, the creation of neutral electronic excitations or ionic radicals is associated with significant nuclear relaxation, the bulk of which occurs along the vinyl-stretching mode or the aromatic-quinoidal stretching mode when conjugated rings are present. Within a polymer chain or molecular aggregate, nuclear relaxation competes with energy- and charge-transfer, mediated by electronic interactions between the constituent units (repeat units for polymers and individual chromophores for a molecular aggregate); for neutral electronic excitations, such inter-unit interactions lead to extended excited states or excitons, while for positive (or negative) charges, interactions lead to delocalized hole (or electron) polarons. The electronic coupling as well as the local coupling between electronic and nuclear degrees of freedom in both excitons and polarons can be described with a Holstein Hamiltonian. However, although excitons and polarons derive from similarly structured Hamiltonians, their optical signatures are quite distinct, largely due to differing ground states and optical selection rules.In this Account, we explore the similarities and differences in the spectral response of excitons and polarons in organic polymers and molecular aggregates. We limit our analysis to the subspace of excitons and hole polarons containing at most one excitation; hence we omit the influence of bipolarons, biexcitons, and higher multiparticle excitations. Using a generic linear array of coupled units as a model host for both excitons and polarons, we compare and contrast the optical responses of both quasiparticles, with a particular emphasis on the spatial coherence length, the length over which an exciton or polaron possesses wave-like properties important for more efficient transport. For excitons, the UV-vis absorption spectrum is generally represented by a distorted vibronic progression with H-like or J-like signatures depending on the sign of the electronic coupling, Jex. The spectrum broadens with increasing site disorder, with the spectral area preserved due to an oscillator strength sum rule. For (hole) polarons, the generally stronger electronic coupling results in a mid-IR spectrum consisting of a narrow, low-energy peak (A) with energy near a vibrational quantum of the vinyl stretching mode, and a broader, higher-energy feature (B). In contrast to the UV-vis spectrum, the mid-IR spectrum is invariant to the sign of the electronic coupling, th, and completely resistant to long-range disorder, where it remains entirely homogeneously broadened. Even in the presence of short-range disorder, the width of peak A remains surprisingly narrow as long as |th| remains sufficiently large, a property that can be understood in terms of Herzberg-Teller coupling. Unlike for excitons, for polarons, the absorption spectral area decreases with increasing short-range disorder σ (i.e., there is no oscillator sum rule) reflective of a decreasing polaron coherence length. The intensity of the low-energy peak A in relation to B is an important signature of polaron coherence. By contrast, for excitons, the absorption spectrum contains no unambiguous signs of exciton coherence. One must instead resort to the shape of the steady-state photoluminescence spectrum. The Holstein-based model has been highly successful in accounting for the spectral properties of molecular aggregates as well as conjugated polymers like poly(3-hexylthiophene) (P3HT) in the mid-IR and UV-vis spectral regions.

6.
J Sep Sci ; 41(3): 747-755, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29071778

RESUMEN

Ellagic acid, a natural polyphenol, was isolated from pomegranate peel extract by hydrophobic interaction using graphene oxide grafted cotton fiber as a stationary adsorbent. The grafted graphene oxide moieties served as hydrophobic interaction-binding sites for ellagic acid adsorption. The graphene oxide grafted cotton fiber was made into a membrane-like sheet in order to complete ellagic acid purification by using a binding-elution mode. The effects of operational parameters, such as the composition of the binding buffer/elution buffer, buffer pH, and buffer concentration, on the isolation process were investigated. It was found that 5 mmol/L sodium carbonate aqueous solution is a proper-binding buffer, and sodium hydroxide aqueous solution ranging from 0.04 to 0.06 mol/L is a suitable elution solution for ellagic acid purification. Under the optimized condition, the purity of ellagic acid increased significantly from 7.5% in the crude extract to 75.0-80.0%. The pH value was found to be a key parameter that determines the adsorption and desorption of ellagic acid. No organic solvent is involved in the entire purification process. Thus, a simple and environmentally friendly method is established for ellagic acid purification using a graphene oxide-modified biodegradable and bio-sourced fibrous adsorbent.


Asunto(s)
Cromatografía , Ácido Elágico/aislamiento & purificación , Grafito/química , Lythraceae/química , Óxidos/química , Adsorción , Tampones (Química) , Cromatografía Líquida de Alta Presión , Fibra de Algodón , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Orgánicos , Fenol , Extractos Vegetales/química , Polifenoles/análisis , Solubilidad , Agua
7.
Anal Chem ; 89(8): 4716-4720, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28345870

RESUMEN

We discuss a method for rapid and cost-effective analysis of monoclonal antibody (mAb) aggregates. Hydrophobic interaction membrane chromatography, which was previously shown to be highly suitable for such separation and analysis, was used in a recently developed format referred to as laterally fed membrane chromatography (or LFMC). A stack of rectangular polyvinylidene fluoride (or PVDF) membranes having 0.22 µm pores housed within a modified analytical-scale LFMC device was used for analyzing aggregate types and content in different monoclonal antibody samples. High-resolution separations could be achieved in less than 1.5 min, this being faster than other currently available techniques such as size exclusion ultraperformance liquid chromatography (SE-UPLC). Moreover, the operating pressure was less than 200 kPa, which eliminated the need for an expensive high-pressure pump and chromatography system. The resolution obtained using the LFMC was comparable to that obtained using SE-UPLC. The effect of design variations such as change in dead volume and pillar size within the lateral channels within the LFMC device was also examined.


Asunto(s)
Anticuerpos Monoclonales/química , Cromatografía Líquida de Alta Presión , Agregado de Proteínas , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Células CHO , Cromatografía en Gel , Cricetinae , Cricetulus , Dimerización , Interacciones Hidrofóbicas e Hidrofílicas , Polivinilos/química
8.
Anal Chem ; 88(21): 10384-10389, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27669977

RESUMEN

The concentration of free chlorine used for disinfecting drinking water, recreational water, and food processing water is critical for environmental and human health conditions, and should be controlled within stipulated ranges. This report, for the first time, describes a paper-based electrochemical free chlorine sensor fabricated by hand-drawing. The electrical resistivity of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) chemoresistor increases when it is exposed to free chlorine in water due to oxidation reactions. Because the relative change of the electrical resistance represents the sensor's response, the sensor can be fabricated by hand-drawing with different shapes and dimensions. The fabrication steps are all at room temperature, require no instrumentation or equipment, and can be carried out by untrained personnel. The fabricated sensor is mechanically stable, reusable, has a wide sensing range, and can accurately measure free chlorine concentrations in real water samples. Therefore, the low-cost, hand-drawn free chlorine sensor is of great significance for water quality monitoring in less developed areas where fabrication facilities, analytical equipment, and trained personnel are limited, but the need for analytical devices is critical. In addition to the free chlorine sensor demonstrated in this study, other types of PEDOT:PSS-based sensors and electronic devices can be fabricated by the developed hand-drawing process.

9.
Anal Chem ; 87(21): 10734-7, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26457368

RESUMEN

Pencil lead was used to fabricate a graphite-based electrode for sensing applications. Its surface was electrochemically modified using ammonium carbamate to make it suitable for sensing free chlorine in water samples. Chlorine is widely used as a disinfectant in the water industry, and the residual free chlorine concentration in water distributed to the consumers must be lower than that stipulated by regulatory bodies. The graphite-based amperometric sensor gave a selective and linear response to free chlorine in the relevant concentration range and no response to commonly interfering ions. It was evaluated further for storage stability, response time, and hysteresis. This sensor is being proposed as a low-cost device for determining free chlorine in water samples. Its ease-of-use, limitations, and feasibility for mass-production and application is discussed.


Asunto(s)
Cloro/análisis , Técnicas Electroquímicas/economía , Técnicas Electroquímicas/instrumentación , Grafito/química , Cloro/química , Electrodos
10.
Biotechnol Bioeng ; 111(6): 1139-49, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24449405

RESUMEN

Heavy chain monoclonal antibodies are being considered as alternative to whole-IgG monoclonal antibodies for certain niche applications. Protein-A chromatography which is widely used for purifying IgG monoclonal antibodies is also used for purifying heavy chain monoclonal antibodies as these molecules possess fully functional Fc regions. However, the acidic conditions used to elute bound antibody may sometimes also leach protein-A, which is immunotoxic. Low pH conditions also tend to make the mAb molecules unstable and prone to aggregation. Moreover, protein-A affinity chromatography does not remove aggregates already present in the feed. Hydrophobic interaction membrane chromatography (or HIMC) has already been studied as an alternative to protein-A chromatography for purifying whole-IgG monoclonal antibodies. This paper describes the use of HIMC for capturing a humanized chimeric heavy chain monoclonal antibody (EG2-hFC). Binding and eluting conditions were suitably optimized using pure EG2-hFC. Based on this, an HIMC method was developed for capture of EG2-hFC directly from cell culture supernatant. The EG2-hFc purity obtained in this single-step process was high. The glycan profiles of protein-A and HIMC purified monoclonal antibody samples were similar, clearly demonstrating that both techniques captured similarly glycosylated population of EG2-hFc. Moreover, this technique was able to resolve aggregates from monomeric form of the EG2-hFc.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Cromatografía Liquida/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Anticuerpos de Cadena Única/aislamiento & purificación , Anticuerpos Monoclonales/genética , Cromatografía de Afinidad/métodos , Humanos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Anticuerpos de Cadena Única/genética
11.
Membranes (Basel) ; 14(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39330529

RESUMEN

A simple carrier phase based ultrafiltration technique that is akin to liquid chromatography and is suitable for medium-to-large volume sample preparation in the laboratory is discussed in this paper. A membrane module was integrated with a liquid chromatography system in a "plug and play" mode for ease of sample handling, and recovery of species retained by the membrane. The sample injector and pump were used for feed injection and for driving ultrafiltration, while the sensors and detectors were used for real-time monitoring of the separation process. The concentration of retained species was enriched by utilizing controlled concentration polarization. The recovery of the retained and enriched species was enhanced by backflow of carrier phase through the membrane using appropriate combination of valves. The backflow of carrier phase also cleaned the membrane and limited the extent of membrane fouling. Proof-of-concept of the proposed technique was provided by conducting different types of protein ultrafiltration experiments. The technique was shown to be suitable for carrying out protein fractionation, desalting, buffer exchange and concentration enrichment. Adoption of this approach is likely to make ultrafiltration easier to use for non-specialized users in biological research laboratories. Other advantages include enhanced product recovery, significant reduction in the number of diavolumes of buffer needed for conducting desalting and buffer exchange, minimal membrane fouling and the potential for repeated use of the same module for multiple separation cycles.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39362118

RESUMEN

The soluble domain of the trimeric SARS-CoV-2 spike protein is a promising candidate for a COVID-19 vaccine. Purification of this protein from mammalian cell culture supernatant using conventional resin-based chromatography is challenging as its large size (∼550 kDa) restricts its access and mobility within the pores of the resin particles. This reduces binding capacity and process robustness very significantly as extremely low flow rates need to be used during purification. Convection-based ion-exchange membrane chromatography has been found to be suitable in this respect. However, the high ionic strength of mammalian cell culture supernatant makes it difficult to bind this protein on charged membranes without dilution with a suitable buffer. An unconventional strategy involving size-exclusion chromatography as the first step, followed by cation exchange membrane chromatography as the second step is proposed in this paper. In the size exclusion chromatography step, the spike protein is excluded from the pores and can therefore be isolated in the void volume fraction. This step removes small molecule impurities and also serves as a desalting and buffer exchange step, making the partially purified material suitable for the cation exchange membrane chromatography step. The proposed process is variant-independent, fast and scalable and addresses some of the challenges associated with the currently used purification methods.

13.
Talanta ; 274: 125998, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574541

RESUMEN

Artificial nanozymes (enzyme-mimics), specifically metallic nanomaterials, have garnered significant attention recently due to their reduced preparation cost and enhanced stability in a wide range of environments. The present investigation highlights, for the first time, a straightforward green synthesis of biogenic platinum nanoparticles (PtNPs) from a natural resource, namely Prunella vulgaris (Pr). To demonstrate the effectiveness of the phytochemical extract as an effective reducing agent, the PtNPs were characterized by various techniques such as UV-vis spectroscopy, High-resolution Transmission electron microscopy (HR-TEM), zeta-potential analysis, Fourier-transform infrared spectroscopy (FTIR), and Energy dispersive spectroscopy (EDS). The formation of PtNPs with narrow size distribution was verified. Surface decoration of PtNPs was demonstrated with multitudinous functional groups springing from the herbal extract. To demonstrate their use as viable nanozymes, the peroxidase-like activity of Pr/PtNPs was evaluated through a colorimetric assay. Highly sensitive visual detection of H2O2 with discrete linear ranges and a low detection limit of 3.43 µM was demonstrated. Additionally, peroxidase-like catalytic activity was leveraged to develop a colorimetric platform to quantify glutamate biomarker levels with a high degree of selectivity, the limit of detection (LOD) being 7.00 µM. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test was used to explore the scavenging nature of the PtNPs via the degradation of DPPH. Overall, the colorimetric assay developed using the Pr/PtNP nanozymes in this work could be used in a broad spectrum of applications, ranging from biomedicine and food science to environmental monitoring.


Asunto(s)
Antioxidantes , Ácido Glutámico , Peróxido de Hidrógeno , Nanopartículas del Metal , Platino (Metal) , Prunella , Platino (Metal)/química , Nanopartículas del Metal/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Antioxidantes/química , Antioxidantes/análisis , Antioxidantes/farmacología , Prunella/química , Ácido Glutámico/análisis , Ácido Glutámico/química , Extractos Vegetales/química
14.
Mater Horiz ; 11(2): 545-553, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37982315

RESUMEN

This study provides the first experimental polarized intermolecular and intramolecular optical absorption components of field-induced polarons in regioregular poly(3-hexylthiophene-2,5-diyl), rr-P3HT, a polymer semiconductor. Highly aligned rr-P3HT thin films were prepared by a high temperature shear-alignment process that orients polymer backbones along the shearing direction. rr-P3HT in-plane molecular orientation was measured by electron diffraction, and out-of-plane orientation was measured through series of synchrotron X-ray scattering techniques. Then, with molecular orientation quantified, polarized charge modulation spectroscopy was used to probe mid-IR polaron absorption in the ℏω = 0.075 - 0.75 eV range and unambiguously assign intermolecular and intramolecular optical absorption components of hole polarons in rr-P3HT. This data represents the first experimental quantification of these polarized components and allowed long-standing theoretical predictions to be compared to experimental results. The experimental data is discrepant with predictions of polaron absorption based on an adiabatic framework that works under the Born-Oppenheimer approximation, but the data is entirely consistent with a more recent nonadiabatic treatment of absorption based on a modified Holstein Hamiltonian. This nonadiabatic treatment was used to show that both intermolecular and intramolecular polaron coherence break down at length scales significantly smaller than estimated structural coherence in either direction. This strongly suggests that polaron delocalization is fundamentally limited by energetic disorder in rr-P3HT.

15.
J Sep Sci ; 36(23): 3673-81, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24106126

RESUMEN

We discuss the purification of mono-PEGylated HSA by hydrophobic interaction membrane chromatography. The hydrophobicity difference between the different fractionated species was induced by the addition of a lyotropic salt that caused phase transition of PEG (hydrophilic under normal condition) to a mildly hydrophobic form. The HSA PEGylation reaction mixture was mixed with lyotropic salt and passed through a stack of hydrophilized polyvinylidene fluoride membrane discs. Unmodified HSA was obtained in the flow through, while the PEGylated forms of the protein bound to the membrane and could be eluted by reducing the salt concentration. Among the three major PEGylated forms of HSA present in the feed (i.e. mono-, di-, and tri-), mono-PEGylated HSA was eluted first and could be resolved from the others. The purified material was analyzed by SDS-PAGE, dynamic light scattering, and SEC combined with multi-angle light scattering. All these analytical techniques indicated the presence of species that has a molar mass consistent with mono-PEGylated HSA. A scaled-down version of the membrane chromatographic methods could be used for the rapid and sensitive analysis of PEGylated proteins.


Asunto(s)
Cromatografía , Polietilenglicoles/química , Albúmina Sérica/química , Electroforesis en Gel de Poliacrilamida , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
16.
Chem Sci ; 14(5): 1040-1064, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36756323

RESUMEN

Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.

17.
Membranes (Basel) ; 13(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676900

RESUMEN

Conventional hollow fiber hemodialyzers have a cylindrical shell-and-tube design. Due to their circular cross-section and radial flow distribution and collection in the headers, the flow of blood in the header as well as in the hollow fiber membranes is non-uniform. The creation of high shear stress and high shear rate zones or stagnation zones could result in problems, such as cell lysis and blood clotting. In this paper, a novel cuboid hemodialyzer design is proposed as an alternative to the conventional cylindrical hemodialyzer. The primary motivation behind the proposed design is to create uniform flow conditions and thereby minimize some of the above-mentioned adverse effects. The most salient feature of the proposed design is a cuboid shell within which the hollow fiber membrane bundle is potted. The lumen of the fibers is fed from one side using a flow distributor consisting of embedded primary and secondary channels, while the fibers are drained from the other side using a flow collector, which also has embedded primary and secondary channels. The flow characteristics of the lumen side of the cuboid hemodialyzer were compared with those of a conventional hemodialyzer based on computational fluid dynamics (CFD) simulations. The results of CFD simulations clearly indicated that the flow of liquid within the cuboid dialyzer was significantly more uniform. Consequently, the shear rate and shear stress were also more uniform. By adopting this new design, some of the problems associated with the conventional hemodialyzer design could potentially be addressed.

18.
J Chromatogr A ; 1699: 464030, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37137192

RESUMEN

Flow uniformity within the device is critically important in membrane chromatography. Recent studies have shown that the design of the device has a significant impact on flow uniformity, and thereby on separation efficiency. The main premise of this work is that computational fluid dynamics (CFD) could serve as a fast and inexpensive tool for preliminary optimization of the design of a membrane chromatography device. CFD also helps in identifying factors that affect flow uniformity. In this paper, CFD is used to compare the fluidic attributes of conventional membrane chromatography devices such as the stacked disc and radial flow devices with those of more recently developed ones such as the different versions of the laterally-fed membrane chromatography (LFMC) device. These are compared based on pulse tracer solute dispersion, which is a useful metric for measuring flow uniformity, and is thereby a good predictor of chromatographic separation performance. The poor separation performance typically observed with conventional membrane chromatography devices could be attributed to the high degree of solute dispersion within these devices. CFD is then used to analyze the impact of factors such as membrane aspect ratio, and channel dimensions on the performance of z2-laterally-fed membrane chromatography (z2LFMC) devices. The results discussed in the paper demonstrate that CFD could indeed serve as a powerful optimization and performance prediction tool for membrane chromatography.


Asunto(s)
Cromatografía , Hidrodinámica , Cromatografía/métodos , Simulación por Computador
19.
Membranes (Basel) ; 13(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36837684

RESUMEN

PEGylated proteins are usually purified using chromatographic methods, which are limited in terms of both speed and scalability. In this paper, we describe a microfiltration membrane-based hybrid method for purifying PEGylated proteins. Polyethylene glycol (or PEG) is a lower critical solution temperature polymer which undergoes phase transition in the presence of a lyotropic salt and forms micelle-like structures which are several microns in size. In the proposed hybrid method, the PEGylated proteins are first converted to their micellar form by the addition of a lyotropic salt (1.65 M ammonium sulfate). While the micelles are retained using a microfiltration membrane, soluble impurities such as the unmodified protein are washed out through the membrane. The PEGylated proteins thus retained by the membrane are recovered by solubilizing them by removing the lyotropic salt. Further, by precisely controlling the salt removal, the different PEGylated forms of the protein, i.e., mono-PEGylated and di-PEGylated forms, are fractionated from each other. Hybrid separation using two different types of microfiltration membrane devices, i.e., a stirred cell and a tangential flow filtration device, are examined in this paper. The membrane-based hybrid method for purifying PEGylated proteins is both fast and scalable.

20.
Biosensors (Basel) ; 13(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36979596

RESUMEN

Chronic pain is now included in the designation of chronic diseases, such as cancer, diabetes, and cardiovascular disease, which can impair quality of life and are major causes of death and disability worldwide. Pain can be treated using cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) due to their wide range of therapeutic benefits, particularly as sedatives, analgesics, neuroprotective agents, or anti-cancer medicines. While little is known about the pharmacokinetics of these compounds, there is increasing interest in the scientific understanding of the benefits and clinical applications of cannabinoids. In this review, we study the use of nanomaterial-based electrochemical sensing for detecting Δ9-THC and CBD. We investigate how nanomaterials can be functionalized to obtain highly sensitive and selective electrochemical sensors for detecting Δ9-THC and CBD. Additionally, we discuss the impacts of sensor pretreatment at fixed potentials and physiochemical parameters of the sensing medium, such as pH, on the electrochemical performance of Δ9-THC and CBD sensors. We believe this review will serve as a guideline for developing Δ9-THC and CBD electrochemical sensors for point-of-care applications.


Asunto(s)
Cannabidiol , Cannabinoides , Dolor Crónico , Humanos , Cannabidiol/uso terapéutico , Dronabinol , Dolor Crónico/tratamiento farmacológico , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA