Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679744

RESUMEN

The demonstration of the first enzyme-based electrode to detect glucose, published in 1967 by S. J. Updike and G. P. Hicks, kicked off huge efforts in building sensors where biomolecules are exploited as native or modified to achieve new or improved sensing performances. In this growing area, bionanotechnology has become prominent in demonstrating how nanomaterials can be tailored into responsive nanostructures using biomolecules and integrated into sensors to detect different analytes, e.g., biomarkers, antibiotics, toxins and organic compounds as well as whole cells and microorganisms with very high sensitivity. Accounting for the natural affinity between biomolecules and almost every type of nanomaterials and taking advantage of well-known crosslinking strategies to stabilize the resulting hybrid nanostructures, biosensors with broad applications and with unprecedented low detection limits have been realized. This review depicts a comprehensive collection of the most recent biochemical and biophysical strategies for building hybrid devices based on bioconjugated nanomaterials and their applications in label-free detection for diagnostics, food and environmental analysis.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Nanoestructuras/química , Técnicas Biosensibles/métodos , Biomarcadores
2.
Bioconjug Chem ; 32(1): 43-62, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33411522

RESUMEN

Morpheeins are proteins that reversibly assemble into different oligomers, whose architectures are governed by conformational changes of the subunits. This property could be utilized in bionanotechnology where the building of nanometric and new high-ordered structures is required. By capitalizing on the adaptability of morpheeins to create patterned structures and exploiting their inborn affinity toward inorganic and living matter, "bottom-up" creation of nanostructures could be achieved using a single protein building block, which may be useful as such or as scaffolds for more complex materials. Peroxiredoxins represent the paradigm of a morpheein that can be applied to bionanotechnology. This review describes the structural and functional transitions that peroxiredoxins undergo to form high-order oligomers, e.g., rings, tubes, particles, and catenanes, and reports on the chemical and genetic engineering approaches to employ them in the generation of responsive nanostructures and nanodevices. The usefulness of the morpheeins' behavior is emphasized, supporting their use in future applications.


Asunto(s)
Nanoestructuras/química , Peroxirredoxinas/química , Proteínas/química , Biopolímeros/química , Peroxirredoxinas/metabolismo , Proteínas/metabolismo , Relación Estructura-Actividad
3.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752132

RESUMEN

In recent years, antibody-drug conjugates (ADCs) have become promising antitumor agents to be used as one of the tools in personalized cancer medicine. ADCs are comprised of a drug with cytotoxic activity cross-linked to a monoclonal antibody, targeting antigens expressed at higher levels on tumor cells than on normal cells. By providing a selective targeting mechanism for cytotoxic drugs, ADCs improve the therapeutic index in clinical practice. In this review, the chemistry of ADC linker conjugation together with strategies adopted to improve antibody tolerability (by reducing antigenicity) are examined, with particular attention to ADCs approved by the regulatory agencies (the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA)) for treating cancer patients. Recent developments in engineering Immunoglobulin (Ig) genes and antibody humanization have greatly reduced some of the problems of the first generation of ADCs, beset by problems, such as random coupling of the payload and immunogenicity of the antibody. ADC development and clinical use is a fast, evolving area, and will likely prove an important modality for the treatment of cancer in the near future.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Anticuerpos Monoclonales/inmunología , Antineoplásicos/inmunología , Humanos , Inmunoconjugados/inmunología , Neoplasias/inmunología , Neoplasias/patología
4.
J Cell Physiol ; 233(5): 4091-4105, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28941284

RESUMEN

Targeted anticancer therapies demand discovery of new cellular targets to be exploited for the delivery of toxic molecules and drugs. In this perspective, in the last few years, nucleolin has been identified as an interesting surface marker to be used for the therapy of glioblastoma. In this study, we investigated whether a synthetic antagonist of cell-surface nucleolin known as N6L, previously reported to decrease both tumor growth and tumor angiogenesis in several cancer cell lines, including glioblastoma cells, as well as endothelial cells proliferation, could be exploited to deliver a protein toxin (saporin) to glioblastoma cells. The pseudopeptide N6L cross-linked to saporin-S6 induced internalization of the toxin inside glioblastoma cancer cells. Our results in vitro demonstrated the effectiveness of this conjugate in inducing cell death, with an ID50 four orders of magnitude lower than that observed for free N6L. Furthermore, the preliminary in vivo study demonstrated efficiency in reducing the tumor mass in an orthotopic mouse model of glioblastoma.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Péptidos/farmacología , Fosfoproteínas/farmacología , Proteínas de Unión al ARN/farmacología , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , Terapia Molecular Dirigida , Neovascularización Patológica/patología , Péptidos/química , Fosfoproteínas/química , Proteínas de Unión al ARN/química , Saporinas/química , Saporinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Nucleolina
5.
Microb Cell Fact ; 15(1): 194, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27842546

RESUMEN

BACKGROUND: The big challenge in any anti-tumor therapeutic approach is represented by the development of drugs selectively acting on the target with limited side effects, that exploit the unique characteristics of malignant cells. The urokinase (urokinase-type plasminogen activator, uPA) and its receptor uPAR have been identified as preferential target candidates since they play a key role in the evolution of neoplasms and are associated with neoplasm aggressiveness and poor clinical outcome in several different tumor types. RESULTS: To selectively target uPAR over-expressing cancer cells, we prepared a set of chimeric proteins (ATF-SAP) formed by the human amino terminal fragments (ATF) of uPA and the plant ribosome inactivating protein saporin (SAP). Codon-usage optimization was used to increase the expression levels of the chimera in the methylotrophic yeast Pichia pastoris. We then moved the bioprocess to bioreactors and demonstrated that the fed-batch production of the recombinant protein can be successfully achieved, obtaining homogeneous discrete batches of the desired constructs. We also determined the cytotoxic activity of the obtained batch of ATF-SAP which was specifically cytotoxic for U937 leukemia cells, while another construct containing a catalytically inactive mutant form of SAP showed no activity. CONCLUSION: Our results demonstrate that the uPAR-targeted, saporin-based recombinant fusion ATF-SAP can be produced in a fed-batch fermentation with full retention of the molecules selective cytotoxicity and hence therapeutic potential.


Asunto(s)
Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Inactivadoras de Ribosomas Tipo 1/biosíntesis , Activador de Plasminógeno de Tipo Uroquinasa/biosíntesis , Reactores Biológicos , Ensayos de Selección de Medicamentos Antitumorales , Fermentación , Humanos , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 1/genética , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Saporinas , Células U937 , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/farmacología
6.
J Cell Biochem ; 116(7): 1256-66, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25581839

RESUMEN

In this paper we have studied a PDZ protein domain as a possible tool for cellular targeting of the ribosome inactivating protein Saporin, exploiting the ability of PDZ domains to recognize and bind short peptide sequences located at the C-terminus of a cognate protein. We have focused our attention on the PDZ domain from hCASK (Human calcium/calmodulin-dependent serine protein kinase) that binds extracellular CD98 in epithelial cells, being this antigen recognized as a marker for several human tumors and particularly considered a negative prognostic marker for human glioblastoma. We produced recombinant fusions of one or two hCASK-PDZ domains with the ribosome inactivating protein Saporin and assayed them on two human glioblastoma cell lines (GL15 and U87). These constructs proved to be toxic, with increasing activity as a function of the number of PDZ domains, and induce cell death by apoptotic mechanisms in a dose-dependent and/or time dependent manner.


Asunto(s)
Proteína-1 Reguladora de Fusión/metabolismo , Guanilato-Quinasas/genética , Inmunotoxinas/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Apoptosis , Línea Celular Tumoral , Proteína-1 Reguladora de Fusión/química , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Guanilato-Quinasas/química , Guanilato-Quinasas/metabolismo , Humanos , Inmunotoxinas/genética , Inmunotoxinas/metabolismo , Terapia Molecular Dirigida , Dominios PDZ , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 1/genética , Proteínas Inactivadoras de Ribosomas Tipo 1/metabolismo , Saporinas
7.
Microb Cell Fact ; 14: 19, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25889802

RESUMEN

BACKGROUND: Antibodies raised against selected antigens over-expressed at the cell surface of malignant cells have been chemically conjugated to protein toxin domains to obtain immunotoxins (ITs) able to selectively kill cancer cells. Since latest generation immunotoxins are composed of a toxic domain genetically fused to antibody fragment(s) which confer on the IT target selective specificity, we rescued from the hydridoma 4KB128, a recombinant single-chain variable fragment (scFv) targeting CD22, a marker antigen expressed by B-lineage leukaemias and lymphomas. We constructed several ITs using two enzymatic toxins both able to block protein translation, one of bacterial origin (a truncated version of Pseudomonas exotoxin A, PE40) endowed with EF-2 ADP-ribosylation activity, the other being the plant ribosome-inactivating protein saporin, able to specifically depurinate 23/26/28S ribosomal RNA. PE40 was selected because it has been widely used for the construction of recombinant ITs that have already undergone evaluation in clinical trials. Saporin has also been evaluated clinically and has recently been expressed successfully at high levels in a Pichia pastoris expression system. The aim of the present study was to evaluate optimal microbial expression of various IT formats. RESULTS: An anti-CD22 scFv termed 4KB was obtained which showed the expected binding activity which was also internalized by CD22+ target cells and was also competed for by the parental monoclonal CD22 antibody. Several fusion constructs were designed and expressed either in E. coli or in Pichia pastoris and the resulting fusion proteins affinity-purified. Protein synthesis inhibition assays were performed on CD22+ human Daudi cells and showed that the selected ITs were active, having IC50 values (concentration inhibiting protein synthesis by 50% relative to controls) in the nanomolar range. CONCLUSIONS: We undertook a systematic comparison between the performance of the different fusion constructs, with respect to yields in E. coli or P. pastoris expression systems and also with regard to each constructs specific killing efficacy. Our results confirm that E. coli is the system of choice for the expression of recombinant fusion toxins of bacterial origin whereas we further demonstrate that saporin-based ITs are best expressed and recovered from P. pastoris cultures after yeast codon-usage optimization.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Inmunotoxinas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Inactivadoras de Ribosomas Tipo 1/metabolismo , Anticuerpos de Cadena Única/metabolismo , Factores de Virulencia/metabolismo , ADP Ribosa Transferasas/genética , Toxinas Bacterianas/genética , Western Blotting , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Escherichia coli/genética , Escherichia coli/metabolismo , Exotoxinas/genética , Humanos , Inmunotoxinas/genética , Pichia/genética , Pichia/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 1/genética , Saporinas , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Factores de Virulencia/genética , Exotoxina A de Pseudomonas aeruginosa
8.
Oral Oncol ; 148: 106635, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37988837

RESUMEN

OBJECTIVES: Adenoid cystic carcinoma (ACC) is a rare type of cancer that typically arises from glandular tissues, most commonly in the salivary glands. Although relatively rare, it represents a serious clinical issue as the management of the disease is highly complex being the only therapeutic options represented by invasive surgery and/or radiotherapy. In the present study, we have explored the potential of galectin-3 binding protein (LGALS3BP) as a novel target for antibody-drug conjugate (ADC) therapy in ACC. MATERIALS AND METHODS: RNAseq was conducted on a panel of 10 ACC patient-derived xenografts (PDX)s tissues and 6 normal salivary glands to analyze LGALS3BP gene expression. Protein expression was assessed in ACC PDX and primary tumor tissues using immunohistochemistry. Anti-LGALS3BP ADC named 1959-sss/DM4, was tested in high LGALS3BP expressing ACC PDX model ST1502B. RESULTS: RNAseq analysis revealed that LGALS3BP expression was highly expressed in ACC PDX tissues compared to normal salivary gland tissues. As evaluated by immunohistochemical analysis, LGALS3BP protein was found to be heterogeneously expressed in 10 ACC PDX and in tumor tissues derived from a cohort of 37 ACC patients. Further, treatment with 1959-sss/DM4 ADC led to durable tumor growth inhibition (TGI) in 100% of animals without observed toxicity. CONCLUSIONS: Our study provides strong evidence that LGALS3BP is a promising therapeutic target for ACC, warranting further expedited preclinical and clinical investigation.


Asunto(s)
Antígenos de Neoplasias , Biomarcadores de Tumor , Carcinoma Adenoide Quístico , Neoplasias de las Glándulas Salivales , Animales , Humanos , Biomarcadores de Tumor/antagonistas & inhibidores , Carcinoma Adenoide Quístico/tratamiento farmacológico , Modelos Animales de Enfermedad , Neoplasias de las Glándulas Salivales/tratamiento farmacológico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones
9.
Biochim Biophys Acta ; 1820(3): 218-25, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21854833

RESUMEN

BACKGROUND: Ovotransferrin is an iron-binding glycoprotein, found in avian egg white and in avian serum, belonging to the family of transferrin iron-binding glycoproteins. All transferrins show high sequence homology. In mammals are presents two different soluble glycoproteins with different functions: i) serum transferrin that is present in plasma and committed to iron transport and iron delivery to cells and ii) lactoferrin that is present in extracellular fluids and in specific granules of polymorphonuclear lymphocytes and committed to the so-called natural immunity. To the contrary, in birds, ovotransferrin remained the only soluble glycoprotein of the transferrin family present both in plasma and egg white. SCOPE OF REVIEW: Substantial experimental evidences are summarized, illustrating the multiple physiological roles of ovotransferrin in an attempt to overcome the common belief that ovotransferrin is a protein dedicated only to iron transport and to iron withholding antibacterial activity. MAJOR CONCLUSIONS: Similarly to the better known family member protein lactoferrin, ovotransferrin appears to be a multi-functional protein with a major role in avian natural immunity. GENERAL SIGNIFICANCE: Biotechnological applications of ovotransferrin and ovotransferrin-related peptides could be considered in the near future, stimulating further research on this remarkable protein. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.


Asunto(s)
Aves , Conalbúmina/química , Conalbúmina/fisiología , Hierro/metabolismo , Animales , Antibacterianos , Antifúngicos , Aves/inmunología , Aves/fisiología , Conalbúmina/sangre , Clara de Huevo/química , Inmunidad Innata , Transporte Iónico , Modelos Moleculares , Estructura Terciaria de Proteína
10.
Mol Oncol ; 17(8): 1460-1473, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37195369

RESUMEN

Glioblastoma multiforme (GBM) is a lethal disease characterized by an overall survival of about 1 year, making it one of the most aggressive tumours, with very limited therapeutic possibilities. Specific biomarkers for early diagnosis as well as innovative therapeutic strategies are urgently needed to improve the management of this deadly disease. In this work, we demonstrated that vesicular galectin-3-binding protein (LGALS3BP), a glycosylated protein overexpressed in a variety of human malignancies, is a potential GBM disease marker and can be efficiently targeted by a specific antibody-drug conjugate (ADC). Immunohistochemical analysis on patient tissues showed that LGALS3BP is highly expressed in GBM and, compared with healthy donors, the amount of vesicular but not total circulating protein is increased. Moreover, analysis of plasma-derived extracellular vesicles from mice harbouring human GBM revealed that LGALS3BP can be used for liquid biopsy as a marker of disease. Finally, an ADC targeting LGALS3BP, named 1959-sss/DM4, specifically accumulates in tumour tissue, producing a potent and dose-dependent antitumor activity. In conclusion, our work provides evidence that vesicular LGALS3BP is a potential novel GBM diagnostic biomarker and therapeutic target deserving further preclinical and clinical validation.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Inmunoconjugados , Humanos , Animales , Ratones , Glioblastoma/diagnóstico , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Biomarcadores de Tumor/metabolismo , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Vesículas Extracelulares/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Antígenos de Neoplasias/metabolismo
11.
J Funct Foods ; 89: 104932, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35003332

RESUMEN

Native and chemically modified whey proteins and their peptide derivatives are encountering the interest of nutraceutical and pharmaceutical industries, due to the numerous properties, ranging from antimicrobial to immunological and antitumorigenic, that result in the possibility to employ milk and its protein components in a wide range of treatment and prevention strategies. Importantly, whey proteins were found to exert antiviral actions against different enveloped and non-enveloped viruses. Recently, the scientific community is focusing on these proteins, especially lactoferrin, since in vitro studies have demonstrated that they exert an important antiviral activity also against SARS-CoV-2. Up-to date, several studies are investigating the efficacy of lactoferrin and other whey proteins in vivo. Aim of this review is to shed light on the most relevant findings concerning the antiviral properties of whey proteins and their potential applications in human health, focussing on their application in prevention and treatment of SARS-CoV-2 infection.

12.
Cancers (Basel) ; 13(2)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477367

RESUMEN

Cancer is one of the primary causes of death worldwide. Tumour malignancy is related to tumor heterogeneity, which has been suggested to be due to a small subpopulation of tumor cells named cancer stem cells (CSCs). CSCs exert a key role in metastasis development, tumor recurrence, and also epithelial-mesenchymal transition, apoptotic resistance, self-renewal, tumorigenesis, differentiation, and drug resistance. Several current therapies fail to eradicate tumors due to the ability of CSCs to escape different programmed cell deaths. Thus, developing CSC-selective and programmed death-inducing therapeutic approaches appears to be of primary importance. In this review, we discuss the main programmed cell death occurring in cancer and the promising CSC-targeting agents developed in recent years. Even if the reported studies are encouraging, further investigations are necessary to establish a combination of agents able to eradicate CSCs or inhibit their growth and proliferation.

13.
Oncol Rep ; 45(2): 776-785, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33416143

RESUMEN

Liver cancer (LC) is an aggressive disease with a markedly poor prognosis. Therapeutic options are limited, and, until recently the only FDA­approved agent for first­line treatment of patients with LC was the multi­kinase inhibitor sorafenib, which exhibits limited activity and an increased overall survival (OS) of only 3 months over placebo. Therefore, the development of alternative therapeutic molecules for the treatment of LC is an urgent medical need. Antibody­drug conjugates (ADCs) are an emerging class of novel anticancer agents, which have been developed recently for the treatment of malignant conditions, including LC, and are being studied in preclinical and clinical settings. Our group has recently generated an ADC [EV20/monomethyl auristatin F (MMAF)] by coupling the HER3 targeting antibody (EV20) to MMAF via a non­cleavable maleimidocaproyl linker. This ADC was revealed to possess potent therapeutic activity in melanoma and breast carcinoma. In the present study, using western blot and flow cytometric analysis, it was reported that HER­3 receptor was highly expressed in LC and activated by its ligand NRG­1ß in a panel of LC cell lines, thus indicating that this receptor may serve as a suitable target for ADC therapy. A novel ADC [EV20­sss­valine­citrulline (vc)/MMAF] was generated, in which the cytotoxic payload MMAF was site­specifically coupled to an engineered variant of EV20 via a vc cleavable linker. Cytotoxicity assays were performed to investigate in vitro antitumor activity of EV20­sss­vc/MMAF and it was compared to EV20/MMAF, which revealed only modest activity in LC.EV20­sss­vc/MMAF exhibited a significant cell killing activity in several LC cell lines. Additionally, in vivo xenograft experiments revealed that EV20­sss­vc/MMAF inhibited growth of LC tumors. The present data indicated that EV20­sss­vc/MMAF is a worthy candidate for the treatment of HER­3 positive LC.


Asunto(s)
Inmunoconjugados/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Oligopéptidos/farmacología , Receptor ErbB-3/antagonistas & inhibidores , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Femenino , Humanos , Inmunoconjugados/uso terapéutico , Hígado/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Persona de Mediana Edad , Oligopéptidos/uso terapéutico , Receptor ErbB-3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Front Pharmacol ; 12: 588306, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935695

RESUMEN

A novel suicide gene therapy approach was tested in U87 MG glioblastoma multiforme cells. A 26nt G-rich double-stranded DNA aptamer (AS1411) was integrated into a vector at the 5' of a mammalian codon-optimized saporin gene, under CMV promoter. With this plasmid termed "APTSAP", the gene encoding ribosome-inactivating protein saporin is driven intracellularly by the glioma-specific aptamer that binds to cell surface-exposed nucleolin and efficiently kills target cells, more effectively as a polyethyleneimine (PEI)-polyplex. Cells that do not expose nucleolin at the cell surface such as 3T3 cells, used as a control, remain unaffected. Suicide gene-induced cell killing was not observed when the inactive saporin mutant SAPKQ DNA was used in the (PEI)-polyplex, indicating that saporin catalytic activity mediates the cytotoxic effect. Rather than apoptosis, cell death has features resembling autophagic or methuosis-like mechanisms. These main findings support the proof-of-concept of using PEI-polyplexed APTSAP for local delivery in rat glioblastoma models.

15.
Biochim Biophys Acta Gen Subj ; 1864(8): 129617, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32304715

RESUMEN

BACKGROUND: Proteins are efficient supramolecular scaffolds to drive self-assembly of nanomaterials into regular colloidal structures suitable for several purposes, including cell imaging and drug delivery. Proteins, in particular, can bind to gold nanoparticles (AuNPs) through van der Waals and electrostatic forces as well as coordination and hydrogen bonds leading their assembly into responsive nanostructures. METHODS: Bioconjugation of alkyne Raman tag-labeled 20 nm AuNPs with the ring-shaped protein Peroxiredoxin (Prx), characterized by a symmetric homo-oligomeric circular arrangement, has been investigated by absorption spectroscopy, transmission and scanning electron microscopy. The plasmonic behavior of the resulting hybrid assemblies has been assessed by Surface Enhanced Raman Scattering (SERS). RESULTS: The ring-shaped Prx molecules are demonstrated to adsorb onto the gold surface acting as "sticky" bio-linkers between adjacent nanoparticles to drive self-assembly into small colloidal AuNPs arrays. The arrays show nanometric interparticle gaps tailored by the protein ring thickness. The arrays exhibit improved optical activity due to SERS allowing detection of the Raman signals from both the protein and alkyne molecules. CONCLUSIONS: This method can be used to build up SERS-active nanostructures using Prx as both a bio-linker and platform for attaching dyes, two-dimensional materials, such as graphene, and other biomolecules including DNA and enzymes. GENERAL SIGNIFICANCE: The development of colloidal SERS nanostructures is considered a significant step forward in spectroscopic bioanalysis. Though protein-tailored nanofabrication is in a childhood stage, these results demonstrate the versatility of supramolecular proteins as tools to build-up nanostructures which are still impractical to obtain through top-down techniques.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Peroxirredoxinas/química , Adsorción , Alquinos/química , Animales , Modelos Moleculares , Tamaño de la Partícula , Peroxirredoxinas/metabolismo , Schistosoma mansoni/enzimología , Espectrometría Raman , Propiedades de Superficie
16.
Cancers (Basel) ; 12(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076448

RESUMEN

Neuroblastoma is the most common extra-cranial solid tumor in infants and children, which accounts for approximately 15% of all cancer-related deaths in the pediatric population. New therapeutic modalities are urgently needed. Antibody-Drug Conjugates (ADC)s-based therapy has been proposed as potential strategy to treat this pediatric malignancy. LGALS3BP is a highly glycosylated protein involved in tumor growth and progression. Studies have shown that LGALS3BP is enriched in extracellular vesicles (EV)s derived by most neuroblastoma cells, where it plays a critical role in preparing a favorable tumor microenvironment (TME) through direct cross talk between cancer and stroma cells. Here, we describe the development of a non-internalizing LGALS3BP ADC, named 1959-sss/DM3, which selectively targets LGALS3BP expressing neuroblastoma. 1959-sss/DM3 mediated potent therapeutic activity in different types of neuroblastoma models. Notably, we found that treatments were well tolerated at efficacious doses that were fully curative. These results offer preclinical proof-of-concept for an ADC targeting exosomal LGALS3BP approach for neuroblastomas.

17.
J Control Release ; 294: 176-184, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30553852

RESUMEN

Galectin-3-binding protein (Gal-3BP) has been identified as a cancer and metastasis-associated, secreted protein that is expressed by the large majority of cancers. The present study describes a special type of non-internalizing antibody-drug-conjugates that specifically target Gal-3BP. Here, we show that the humanized 1959 antibody, which specifically recognizes secreted Gal-3BP, selectively localized around tumor but not normal cells. A site specific disulfide linkage with thiol-maytansinoids to unpaired cysteine residues of 1959, resulting in a drug-antibody ratio of 2, yielded an ADC product, which cured A375m melanoma bearing mice. ADC products based on the non-internalizing 1959 antibody may be useful for the treatment of several human malignancies, as the cognate antigen is abundantly expressed and secreted by several cancers, while being present at low levels in most normal adult tissues.


Asunto(s)
Antígenos de Neoplasias/inmunología , Biomarcadores de Tumor/inmunología , Inmunoconjugados/uso terapéutico , Neoplasias/terapia , Animales , Línea Celular Tumoral , Femenino , Humanos , Inmunoconjugados/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Conejos
18.
Toxins (Basel) ; 10(2)2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29438358

RESUMEN

Plant Ribosome-inactivating proteins (RIPs) including the type I RIP Saporin have been used for the construction of Immunotoxins (ITxs) obtained via chemical conjugation of the toxic domain to whole antibodies or by generating genetic fusions to antibody fragments/targeting domains able to direct the chimeric toxin against a desired sub-population of cancer cells. The high enzymatic activity, stability and resistance to conjugation procedures and especially the possibility to express recombinant fusions in yeast, make Saporin a well-suited tool for anti-cancer therapy approaches. Previous clinical work on RIPs-based Immunotoxins (including Saporin) has shown that several critical issues must be taken into deeper consideration to fully exploit their therapeutic potential. This review focuses on possible combinatorial strategies (chemical and genetic) to augment Saporin-targeted toxin efficacy. Combinatorial approaches may facilitate RIP escape into the cytosolic compartment (where target ribosomes are), while genetic manipulations may minimize potential adverse effects such as vascular-leak syndrome or may identify T/B cell epitopes in order to decrease the immunogenicity following similar strategies as those used in the case of bacterial toxins such as Pseudomonas Exotoxin A or as for Type I RIP Bouganin. This review will further focus on strategies to improve recombinant production of Saporin-based chimeric toxins.


Asunto(s)
Inmunotoxinas , Saporinas , Animales , Terapia Genética , Humanos , Inmunotoxinas/química , Inmunotoxinas/genética , Inmunotoxinas/uso terapéutico , Fototerapia , Pinocitosis , Saporinas/química , Saporinas/genética , Saporinas/uso terapéutico
19.
J Biomed Mater Res A ; 106(6): 1585-1594, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29424473

RESUMEN

Novel two-dimensional films and three-dimensional (3D) scaffolds based on chitosan (CHI), apatite (Ap), and graphene oxide (GO) were developed by an in situ synthesis in which self-assembly process was conducted to direct partial reduction of GO by CHI in acidic medium. Physical-chemical characterization was carried out by optical microscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. In vitro biological studies using murine fibroblast (MC3T3) and human neuroblastoma (SH-SY5Y) cell lines were also performed. Cell growth and adherence on composites was also checked using SEM. Live and death staining by confocal microscope and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium of the samples were investigated. The results confirmed the incorporation of both Ap and GO sheets, into CHI polymeric matrix. Furthermore, it was confirmed a physical integration between inorganic Ap and organic CHI and strong chemical interaction between CHI and GO in the obtained composites. SH-SY5Y cell line showed preferential adherence on CHI/GO films surface while MC3T3 cell line displayed a good compatibility for all 3D scaffolds. This study confirms the biocompatibility of materials based on CHI, Ap, and GO for future tissues applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1585-1594, 2018.


Asunto(s)
Apatitas/química , Materiales Biocompatibles/química , Quitosano/análogos & derivados , Grafito/química , Andamios del Tejido/química , Animales , Adhesión Celular , Línea Celular , Proliferación Celular , Humanos , Ratones , Ingeniería de Tejidos
20.
J Tissue Eng Regen Med ; 11(9): 2462-2470, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29737636

RESUMEN

The use of nanoscale materials in the design of scaffolds for CNS tissue is increasing, due to their ability to promote cell adhesion, to mimic an extracellular matrix microenvironment and to interact with neuronal membranes. In this framework, one of the major challenges when using undifferentiated neural cells is how to control the differentiation process. Here we report the characterization of a scaffold based on the self-assembled nanotubes of a mutant of the protein peroxiredoxin (from Schistosoma mansoni or Bos taurus), which allows the growth and differentiation of a model neuronal cell line (SHSY5Y). The results obtained demonstrate that SHSY5Y cells grow without any sign of toxicity and develop a neuronal phenotype, as shown by the expression of neuronal differentiation markers, without the use of any differentiation supplement, even in the presence of serum. The prodifferentiation effect is demonstrated to be dependent on the formation of the protein nanotube, since a wild-type (WT) form of the peroxiredoxin from Schistosoma mansoni does not induce any differentiation. The protein scaffold was also able to induce the spread of glioblastoma cancer stem cells growing in neurospheres and allowing the acquisition of a neuron-like morphology, as well as of immature rat cortical neurons. This protein used here as coating agent may be suggested for the development of scaffolds for tissue regeneration or anti-tumour devices. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Diferenciación Celular , Células Madre Neoplásicas/patología , Neuronas/citología , Peroxirredoxinas/química , Animales , Bovinos , Recuento de Células , Línea Celular Tumoral , Proliferación Celular , Humanos , Células Madre Neoplásicas/ultraestructura , Neuroblastoma/patología , Neuroblastoma/ultraestructura , Peroxirredoxinas/ultraestructura , Ratas Sprague-Dawley , Schistosoma mansoni/metabolismo , Esferoides Celulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA