Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(7): 104912, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37307916

RESUMEN

α-synuclein (αS) is an abundant, neuronal protein that assembles into fibrillar pathological inclusions in a spectrum of neurodegenerative diseases that include Lewy body diseases (LBD) and Multiple System Atrophy (MSA). The cellular and regional distributions of pathological inclusions vary widely between different synucleinopathies contributing to the spectrum of clinical presentations. Extensive cleavage within the carboxy (C)-terminal region of αS is associated with inclusion formation, although the events leading to these modifications and the implications for pathobiology are of ongoing study. αS preformed fibrils can induce prion-like spread of αS pathology in both in vitro and animal models of disease. Using C truncation-specific antibodies, we demonstrated here that prion-like cellular uptake and processing of αS preformed fibrils resulted in two major cleavages at residues 103 and 114. A third cleavage product (122 αS) accumulated upon application of lysosomal protease inhibitors. In vitro, both 1-103 and 1-114 αS polymerized rapidly and extensively in isolation and in the presence of full-length αS. 1-103 αS also demonstrated more extensive aggregation when expressed in cultured cells. Furthermore, we used novel antibodies to αS cleaved at residue Glu114, to assess x-114 αS pathology in postmortem brain tissue from patients with LBD and MSA, as well as three different transgenic αS mouse models of prion-like induction. The distribution of x-114 αS pathology was distinct from that of overall αS pathology. These studies reveal the cellular formation and behavior of αS C-truncated at residues 114 and 103 as well as the disease dependent distribution of x-114 αS pathology.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Atrofia de Múltiples Sistemas , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Ratones Transgénicos , Atrofia de Múltiples Sistemas/metabolismo , Atrofia de Múltiples Sistemas/patología , Priones/química , Priones/metabolismo , Humanos , Lisosomas/enzimología , Inhibidores de Proteasas , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Autopsia , Ácido Glutámico/metabolismo
2.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175990

RESUMEN

Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be classified as tauopathies, which are a group of neurodegenerative diseases that develop toxic tau aggregates in specific brain regions. These pathological tau inclusions are altered by various post-translational modifications (PTMs) that include phosphorylation, acetylation, and methylation. Tau methylation has emerged as a target of interest for its potential involvement in tau pathomechanisms. Filamentous tau aggregates isolated from patients with AD are methylated at multiple lysine residues, although the exact methyltransferases have not been identified. One strategy to study the site-specific effects of methylation is to create methylation mimetics using a KFC model, which replaces lysine (K) with a hydrophobic group such as phenylalanine (F) to approximate the effects of lysine methylation (C or methyl group). In this study, tau methylmimetics were used to model several functional aspects of tau methylation such as effects on microtubule binding and tau aggregation in cell models. Overall, several tau methylmimetics displayed impaired microtubule binding, and tau methylmimetics enhanced prion-like seeded aggregation in the context of the FTD tau mutation P301L. Like other PTMs, tau methylation is a contributing factor to tau pathogenesis and could be a potential therapeutic drug target for the treatment of different tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedad de Pick , Priones , Tauopatías , Humanos , Proteínas tau/metabolismo , Lisina/metabolismo , Priones/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Enfermedad de Alzheimer/metabolismo , Tauopatías/metabolismo , Enfermedad de Pick/metabolismo , Microtúbulos/metabolismo
3.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37761979

RESUMEN

Tau proteins within the adult central nervous system (CNS) are found to be abnormally aggregated into heterogeneous filaments in neurodegenerative diseases, termed tauopathies. These tau inclusions are pathological hallmarks of Alzheimer's disease (AD), Pick's disease (PiD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP). The neuropathological hallmarks of these diseases burden several cell types within the CNS, and have also been shown to be abundantly phosphorylated. The mechanism(s) by which tau aggregates in the CNS is not fully known, but it is hypothesized that hyperphosphorylated tau may precede and further promote filament formation, leading to the production of these pathological inclusions. In the studies herein, we generated and thoroughly characterized two novel conformation-dependent tau monoclonal antibodies that bind to residues Pro218-Glu222, but are sensitive to denaturing conditions and highly modulated by adjacent downstream phosphorylation sites. These epitopes are present in the neuropathological hallmarks of several tauopathies, including AD, PiD, CBD, and PSP. These novel antibodies will further enable investigation of tau-dependent pathological inclusion formation and enhance our understanding of the phosphorylation signatures within tauopathies with the possibility of new biomarker developments.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Pick , Tauopatías , Adulto , Humanos , Fosforilación , Anticuerpos Monoclonales , Sistema Nervioso Central
4.
Neuropathol Appl Neurobiol ; 48(2): e12779, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34825397

RESUMEN

AIMS: To illuminate the pathological synergy between Aß and tau leading to emergence of neurofibrillary tangles (NFT) in Alzheimer's disease (AD), here, we have performed a comparative neuropathological study utilising three distinctive variants of human tau (WT tau, P301L mutant tau and S320F mutant tau). Previously, in non-transgenic mice, we showed that WT tau or P301L tau does not form NFT while S320F tau can spontaneously aggregate into NFT, allowing us to test the selective vulnerability of these different tau conformations to the presence of Aß plaques. METHODS: We injected recombinant AAV-tau constructs into neonatal APP transgenic TgCRND8 mice or into 3-month-old TgCRND8 mice; both cohorts were aged 3 months post injection. This allowed us to test how different tau variants synergise with soluble forms of Aß (pre-deposit cohort) or with frank Aß deposits (post-deposit cohort). RESULTS: Expression of WT tau did not produce NFT or altered Aß in either cohort. In the pre-deposit cohort, S320F tau induced Aß plaque deposition, neuroinflammation and synaptic abnormalities, suggesting that early tau tangles affect the amyloid cascade. In the post-deposit cohort, contemporaneous expression of S320F tau did not exacerbate amyloid pathology, showing a dichotomy in Aß-tau synergy based on the nature of Aß. P301L tau produced NFT-type inclusions in the post-deposit cohort, but not in the pre-deposit cohort, indicating pathological synergy with pre-existing Aß deposits. CONCLUSIONS: Our data show that different tau mutations representing specific folding variants of tau synergise with Aß to different extents, depending on the presence of cerebral deposits.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Ovillos Neurofibrilares/patología , Placa Amiloide/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Ratones , Ratones Transgénicos , Ovillos Neurofibrilares/metabolismo , Neuronas/metabolismo , Neuronas/patología , Placa Amiloide/metabolismo
5.
Acta Neuropathol ; 143(6): 663-685, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35488930

RESUMEN

α-synuclein (αSyn) is an intrinsically disordered protein which can undergo structural transformations, resulting in the formation of stable, insoluble fibrils. αSyn amyloid-type nucleation can be induced by misfolded 'seeds' serving as a conformational template, tantamount to the prion-like mechanism. Accumulation of αSyn inclusions is a key feature of dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), and are found as additional pathology in Alzheimer's disease (AD) such as AD with amygdala predominant Lewy bodies (AD/ALB). While these disorders accumulate the same pathological protein, they exhibit heterogeneity in clinical and histological features; however, the mechanism(s) underlying this variability remains elusive. Accruing data from human autopsy studies, animal inoculation modeling, and in vitro characterization experiments, have lent credence to the hypothesis that conformational polymorphism of the αSyn amyloid-type fibril structure results in distinct "strains" with categorical infectivity traits. Herein, we directly compare the seeding abilities and outcome of human brain lysates from these diseases, as well as recombinant preformed human αSyn fibrils by the intracerebral inoculation of transgenic mice overexpressing either human wild-type αSyn or human αSyn with the familial A53T mutation. Our study has revealed that the initiating inoculum heavily dictates the phenotypic and pathological course of disease. Interestingly, we have also established relevant host-dependent distinctions between propagation profiles, including burden and spread of inclusion pathology throughout the neuroaxis, as well as severity of neurological symptoms. These findings provide compelling evidence supporting the hypothesis that diverse prion-type conformers may explain the variability seen in synucleinopathies.


Asunto(s)
Enfermedad de Alzheimer , Atrofia de Múltiples Sistemas , Priones , Sinucleinopatías , Enfermedad de Alzheimer/patología , Amiloide , Animales , Humanos , Ratones , Ratones Transgénicos , Atrofia de Múltiples Sistemas/patología , Priones/genética , Priones/metabolismo , Sinucleinopatías/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
Mol Ther ; 29(2): 859-872, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33128896

RESUMEN

Immunotherapies designed to treat neurodegenerative tauopathies that primarily engage extracellular tau may have limited efficacy as tau is primarily intracellular. We generated tau-targeting single-chain variable fragments (scFvs) and intrabodies (iBs) from the phosphorylated tau-specific antibodies CP13 and PHF1 and the pan-tau antibody Tau5. Recombinant adeno-associated virus (rAAV) was utilized to express these antibody fragments in homozygous JNPL3 P301L tau mice. Two iBs (CP13i, PHF1i) and one scFv (PHF1s) abrogated tau pathology and delayed time to severe hindlimb paralysis. In a second tauopathy model (rTg4510), CP13i and PHF1i reduced tau pathology, but cognate scFvs did not. These data demonstrate that (1) disease-modifying efficacy does not require antibody effector functions, (2) the intracellular targeting of tau with phosphorylated tau-specific iBs is more effective than extracellular targeting with the scFvs, and (3) robust effects on tau pathology before neurodegeneration only resulted in modest disease modification as assessed by delay of severe motor phenotype.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia , Vías Secretoras/efectos de los fármacos , Anticuerpos de Cadena Única/farmacología , Proteínas tau/antagonistas & inhibidores , Animales , Terapia Combinada , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/etiología , Resultado del Tratamiento , Proteínas tau/metabolismo
7.
Mol Cell ; 55(1): 15-30, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24882209

RESUMEN

Misfolded proteins compromise cellular function and cause disease. How these proteins are detected and degraded is not well understood. Here we show that PML/TRIM19 and the SUMO-dependent ubiquitin ligase RNF4 act together to promote the degradation of misfolded proteins in the mammalian cell nucleus. PML selectively interacts with misfolded proteins through distinct substrate recognition sites and conjugates these proteins with the small ubiquitin-like modifiers (SUMOs) through its SUMO ligase activity. SUMOylated misfolded proteins are then recognized and ubiquitinated by RNF4 and are subsequently targeted for proteasomal degradation. We further show that PML deficiency exacerbates polyglutamine (polyQ) disease in a mouse model of spinocerebellar ataxia 1 (SCA1). These findings reveal a mammalian system that removes misfolded proteins through sequential SUMOylation and ubiquitination and define its role in protection against protein-misfolding diseases.


Asunto(s)
Degeneración Nerviosa/patología , Pliegue de Proteína , Proteolisis , Animales , Ataxina-1 , Ataxinas , Humanos , Ratones , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Proteína de la Leucemia Promielocítica , Complejo de la Endopetidasa Proteasomal , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología , Ubiquitina , Ubiquitinación
8.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897751

RESUMEN

MHCII molecules, expressed by professional antigen-presenting cells (APCs) such as T cells and B cells, are hypothesized to play a key role in the response of cellular immunity to α-synuclein (α-syn). However, the role of cellular immunity in the neuroanatomic transmission of α-syn pre-formed fibrillar (PFF) seeds is undetermined. To illuminate whether cellular immunity influences the transmission of α-syn seeds from the periphery into the CNS, we injected preformed α-syn PFFs in the hindlimb of the Line M83 transgenic mouse model of synucleinopathy lacking MhcII. We showed that a complete deficiency in MhcII accelerated the appearance of seeded α-syn pathology and shortened the lifespan of the PFF-seeded M83 mice. To characterize whether B-cell and T-cell inherent MhcII function underlies this accelerated response to PFF seeding, we next injected α-syn PFFs in Rag1-/- mice which completely lacked these mature lymphocytes. There was no alteration in the lifespan or burden of endstage α-syn pathology in the PFF-seeded, Rag1-deficient M83+/- mice. Together, these results suggested that MhcII function on immune cells other than these classical APCs is potentially involved in the propagation of α-syn in this model of experimental synucleinopathy. We focused on microglia next, finding that while microglial burden was significantly upregulated in PFF-seeded, MhcII-deficient mice relative to controls, the microglial activation marker Cd68 was reduced in these mice, suggesting that these microglia were not responsive. Additional analysis of the CNS showed the early appearance of the neurotoxic astrocyte A1 signature and the induction of the Ifnγ-inducible anti-viral response mediated by MhcI in the MhcII-deficient, PFF-seeded mice. Overall, our data suggest that the loss of MhcII function leads to a dysfunctional response in non-classical APCs and that this response could potentially play a role in determining PFF-induced pathology. Collectively, our results identify the critical role of MhcII function in synucleinopathies induced by α-syn prion seeds.


Asunto(s)
Sinucleinopatías , Animales , Proteínas de Homeodominio , Ratones , Ratones Transgénicos , Microglía , alfa-Sinucleína/genética
9.
J Neurosci ; 40(34): 6649-6659, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32669353

RESUMEN

In vivo functional and structural brain imaging of synucleinopathies in humans have provided a rich new understanding of the affected networks across the cortex and subcortex. Despite this progress, the temporal relationship between α-synuclein (α-syn) pathology and the functional and structural changes occurring in the brain is not well understood. Here, we examine the temporal relationship between locomotor ability, brain microstructure, functional brain activity, and α-syn pathology by longitudinally conducting rotarod, diffusion magnetic resonance imaging (MRI), resting-state functional MRI (fMRI), and sensory-evoked fMRI on 20 mice injected with α-syn fibrils and 20 PBS-injected mice at three timepoints (10 males and 10 females per group). Intramuscular injection of α-syn fibrils in the hindlimb of M83+/- mice leads to progressive α-syn pathology along the spinal cord, brainstem, and midbrain by 16 weeks post-injection. Our results suggest that peripheral injection of α-syn has acute systemic effects on the central nervous system such that structural and resting-state functional activity changes occur in the brain by four weeks post-injection, well before α-syn pathology reaches the brain. At 12 weeks post-injection, a separate and distinct pattern of structural and sensory-evoked functional brain activity changes was observed that are co-localized with previously reported regions of α-syn pathology and immune activation. Microstructural changes in the pons at 12 weeks post-injection were found to predict survival time and preceded measurable locomotor deficits. This study provides preliminary evidence for diffusion and fMRI markers linked to the progression of synuclein pathology and has translational importance for understanding synucleinopathies in humans.SIGNIFICANCE STATEMENT α-Synuclein (α-syn) pathology plays a critical role in neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The longitudinal effects of α-syn pathology on locomotion, brain microstructure, and functional brain activity are not well understood. Using high field imaging, we show preliminary evidence that peripheral injection of α-syn fibrils induces unique patterns of functional and structural changes that occur at different temporal stages of α-syn pathology progression. Our results challenge existing assumptions that α-syn pathology must precede changes in brain structure and function. Additionally, we show preliminary evidence that diffusion and functional magnetic resonance imaging (fMRI) are capable of resolving such changes and thus should be explored further as markers of disease progression.


Asunto(s)
Encéfalo/fisiología , Encéfalo/fisiopatología , Potenciales Evocados Somatosensoriales , Locomoción/fisiología , Sinucleinopatías/patología , Sinucleinopatías/fisiopatología , alfa-Sinucleína/administración & dosificación , Animales , Conducta Animal , Encéfalo/efectos de los fármacos , Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Femenino , Calor , Humanos , Locomoción/efectos de los fármacos , Masculino , Ratones Transgénicos , Estimulación Física
10.
J Neurosci ; 40(39): 7559-7576, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32868457

RESUMEN

Degeneration of locus ceruleus (LC) neurons and dysregulation of noradrenergic signaling are ubiquitous features of Parkinson's disease (PD). The LC is among the first brain regions affected by α-synuclein (asyn) pathology, yet how asyn affects these neurons remains unclear. LC-derived norepinephrine (NE) can stimulate neuroprotective mechanisms and modulate immune cells, while dysregulation of NE neurotransmission may exacerbate disease progression, particularly nonmotor symptoms, and contribute to the chronic neuroinflammation associated with PD pathology. Although transgenic mice overexpressing asyn have previously been developed, transgene expression is usually driven by pan-neuronal promoters and thus has not been selectively targeted to LC neurons. Here we report a novel transgenic mouse expressing human wild-type asyn under control of the noradrenergic-specific dopamine ß-hydroxylase promoter (DBH-hSNCA). These mice developed oligomeric and conformation-specific asyn in LC neurons, alterations in hippocampal and LC microglial abundance, upregulated GFAP expression, degeneration of LC fibers, decreased striatal DA metabolism, and age-dependent behaviors reminiscent of nonmotor symptoms of PD that were rescued by adrenergic receptor antagonists. These mice provide novel insights into how asyn pathology affects LC neurons and how central noradrenergic dysfunction may contribute to early PD pathophysiology.SIGNIFICANCE STATEMENT ɑ-Synuclein (asyn) pathology and loss of neurons in the locus ceruleus (LC) are two of the most ubiquitous neuropathologic features of Parkinson's disease (PD). Dysregulated norepinephrine (NE) neurotransmission is associated with the nonmotor symptoms of PD, including sleep disturbances, emotional changes such as anxiety and depression, and cognitive decline. Importantly, the loss of central NE may contribute to the chronic inflammation in, and progression of, PD. We have generated a novel transgenic mouse expressing human asyn in LC neurons to investigate how increased asyn expression affects the function of the central noradrenergic transmission and associated behaviors. We report cytotoxic effects of oligomeric and conformation-specific asyn, astrogliosis, LC fiber degeneration, disruptions in striatal dopamine metabolism, and age-dependent alterations in nonmotor behaviors without inclusions.


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Gliosis/genética , Locus Coeruleus/metabolismo , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , Neuronas Adrenérgicas/patología , Animales , Ritmo Circadiano , Femenino , Gliosis/patología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Locus Coeruleus/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Movimiento , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , alfa-Sinucleína/genética
11.
J Biol Chem ; 295(30): 10224-10244, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32424039

RESUMEN

α-Synuclein (αsyn) is an abundant brain neuronal protein that can misfold and polymerize to form toxic fibrils coalescing into pathologic inclusions in neurodegenerative diseases, including Parkinson's disease, Lewy body dementia, and multiple system atrophy. These fibrils may induce further αsyn misfolding and propagation of pathologic fibrils in a prion-like process. It is unclear why αsyn initially misfolds, but a growing body of literature suggests a critical role of partial proteolytic processing resulting in various truncations of the highly charged and flexible carboxyl-terminal region. This review aims to 1) summarize recent evidence that disease-specific proteolytic truncations of αsyn occur in Parkinson's disease, Lewy body dementia, and multiple system atrophy and animal disease models; 2) provide mechanistic insights on how truncation of the amino and carboxyl regions of αsyn may modulate the propensity of αsyn to pathologically misfold; 3) compare experiments evaluating the prion-like properties of truncated forms of αsyn in various models with implications for disease progression; 4) assess uniquely toxic properties imparted to αsyn upon truncation; and 5) discuss pathways through which truncated αsyn forms and therapies targeted to interrupt them. Cumulatively, it is evident that truncation of αsyn, particularly carboxyl truncation that can be augmented by dysfunctional proteostasis, dramatically potentiates the propensity of αsyn to pathologically misfold into uniquely toxic fibrils with modulated prion-like seeding activity. Therapeutic strategies and experimental paradigms should operate under the assumption that truncation of αsyn is likely occurring in both initial and progressive disease stages, and preventing truncation may be an effective preventative strategy against pathologic inclusion formation.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Agregación Patológica de Proteínas/terapia , alfa-Sinucleína/genética
12.
J Neurochem ; 158(2): 455-466, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33772783

RESUMEN

Tauopathies are a group of heterogeneous neurodegenerative disorders characterized by brain deposition of tau inclusions. These insidious disorders include Alzheimer's disease and frontotemporal dementia, the two leading causes of dementia. Mutations in the microtubule-associated protein tau (MAPT) gene lead to familial forms of frontotemporal dementia. Previously, we used cell-based assays to screen over 20 missense tau mutations and found that decreased microtubule (MT) binding affinity was the most shared property. As a break from this trend, the MAPT mutations Q336H and Q336R are thought to promote MT assembly rather than inhibit it based on in vitro studies. Q336H and Q336R MAPT mutations also cause early onset frontotemporal dementia with Pick bodies, which are mostly composed of 3R tau isoforms. To provide further insights on the pathobiology of these mutations, we assessed Q336H and Q336R tau mutants for aggregation propensity and MT binding in cell-based assays in the context of both 0N3R and 0N4R tau isoforms. Q336R tau was prone to prion-like seeded aggregation but both Q336H and Q336R tau led to increased MT binding. Additionally, we found that different tau isoforms with these mutations heterogeneously regulate different MT subpopulations of tyrosinated and acetylated MTs, markers of newly formed MTs and stable MTs. The Q336H and Q336R tau mutations may exemplify an alternative mechanism where pathogenic tau can bind MTs with higher affinity and hyperstabilize MTs, which prevent proper MT regulation and homeostasis.


Asunto(s)
Microtúbulos/genética , Tauopatías/genética , Proteínas tau/genética , Demencia Frontotemporal/genética , Células HEK293 , Humanos , Isomerismo , Mutagénesis Sitio-Dirigida , Mutación/genética , Enfermedad de Pick/genética , Procesamiento Proteico-Postraduccional , Proteínas tau/química
13.
Hum Mol Genet ; 28(19): 3255-3269, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31261380

RESUMEN

Understanding the biological functions of tau variants can illuminate differential etiologies of Alzheimer's disease (AD) and primary tauopathies. Though the end-stage neuropathological attributes of AD and primary tauopathies are similar, the etiology and behavioral outcomes of these diseases follow unique and divergent trajectories. To study the divergent physiological properties of tau variants on a uniform immunogenetic background, we created somatic transgenesis CNS models of tauopathy utilizing neonatal delivery of adeno-associated viruses expressing wild-type (WT) or mutant tau in non-transgenic mice. We selected four different tau variants-WT tau associated with AD, P301L mutant tau associated with frontotemporal dementia (FTD), S320F mutant tau associated with Pick's disease and a combinatorial approach using P301L/S320F mutant tau. CNS-targeted expression of WT and P301L mutant tau results in robust tau hyperphosphorylation without tangle pathology, gradually developing age-progressive memory deficits. In contrast, the S320F variant, especially in combination with P301L, produces an AD-type tangle pathology, focal neuroinflammation and memory impairment on an accelerated time scale. Using the doubly mutated P301L/S320F tau variant, we demonstrate that combining different mutations can have an additive effect on neuropathologies and associated co-morbidities, possibly hinting at involvement of unique functional pathways. Importantly, we also show that overexpression of wild-type tau as well as an FTD-associated tau variant can lead to cognitive deficits even in the absence of tangles. Together, our data highlights the synergistic neuropathologies and associated cognitive and synaptic alterations of the combinatorial tau variant leading to a robust model of tauopathy.


Asunto(s)
Sistema Nervioso Central/metabolismo , Mutación , Tauopatías/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Animales , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/psicología , Humanos , Masculino , Ratones , Ratones Transgénicos , Fosforilación , Enfermedad de Pick/genética , Enfermedad de Pick/metabolismo , Enfermedad de Pick/psicología , Tauopatías/metabolismo , Tauopatías/psicología
14.
Acta Neuropathol ; 141(3): 359-381, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33496840

RESUMEN

Accumulation of the tau protein in fibrillar intracellular aggregates is a defining feature of multiple neurodegenerative diseases collectively referred to as tauopathies. Despite intensive study of tau, there is limited information on the formation and clearance dynamics of tau inclusions. Using rAAV vectors to mediate expression of Dendra2-tagged human wild-type, P301L and pro-aggregant P301L/S320F tau proteins, with and without the addition of exogenous tau fibrillar seeds, we evaluated tau inclusion dynamics in organotypic brain slice culture (BSC) models using long-term optical pulse labeling methodology. Our studies reveal that tau inclusions typically form in 12-96 h in tauopathy BSC models. Unexpectedly, we demonstrate appreciable turnover of tau within inclusions with an average half-life of ~ 1 week when inclusions are newly formed. When BSCs with inclusions are aged in culture for extended periods, tau inclusions continue to turnover, but their half-lives increase to ~ 2 weeks and ~ 3 weeks after 1 and 2 months in culture, respectively. Individual tau inclusions can be long-lived structures that can persist for months in these BSC models and for even longer in the human brain. However, our data indicate that tau inclusions, are not 'tombstones', but dynamic structures with appreciable turnover. Understanding the cellular processes mediating this inclusion turnover may lead to new therapeutic strategies that could reverse pathological tau inclusion formation.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Neuronas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Ratones , Neuronas/patología , Técnicas de Cultivo de Órganos , Tauopatías/patología
15.
Acta Neuropathol ; 142(1): 87-115, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33978813

RESUMEN

Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different structure and enhanced in vivo prodegenerative properties. The α-Syn/p25α strain induced larger inclusions in human dopaminergic neurons. In vivo, intramuscular injection of preformed fibrils (PFF) of the α-Syn/p25α strain compared to α-Syn PFF resulted in a shortened life span and a distinct anatomical distribution of inclusion pathology in the brain of a human A53T transgenic (line M83) mouse. Investigation of α-Syn aggregates in brain stem extracts of end-stage mice demonstrated that the more aggressive phenotype of the α-Syn/p25α strain was associated with an increased load of α-Syn aggregates based on a Förster resonance energy transfer immunoassay and a reduced α-Syn aggregate seeding activity based on a protein misfolding cyclic amplification assay. When injected unilaterally into the striata of wild-type mice, the α-Syn/p25α strain resulted in a more-pronounced motoric phenotype than α-Syn PFF and exhibited a "tropism" for nigro-striatal neurons compared to α-Syn PFF. Overall, our data support a hypothesis whereby oligodendroglial p25α is responsible for generating a highly prodegenerative α-Syn strain in multiple system atrophy.


Asunto(s)
Atrofia de Múltiples Sistemas/genética , Enfermedades Neurodegenerativas/genética , Sinucleinopatías/patología , alfa-Sinucleína/genética , Animales , Línea Celular , Humanos , Cuerpos de Inclusión/patología , Ratones , Ratones Transgénicos , Atrofia de Múltiples Sistemas/patología , Proteínas del Tejido Nervioso/genética , Oligodendroglía/metabolismo , Conformación Proteica , Deficiencias en la Proteostasis/genética , Sustancia Negra/patología , alfa-Sinucleína/toxicidad
16.
Virol J ; 18(1): 66, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33781287

RESUMEN

Beginning in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a novel pathogen that causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 has infected more than 111 million people worldwide and caused over 2.47 million deaths. Individuals infected with SARS-CoV-2 show symptoms of fever, cough, dyspnea, and fatigue with severe cases that can develop into pneumonia, myocarditis, acute respiratory distress syndrome, hypercoagulability, and even multi-organ failure. Current clinical management consists largely of supportive care as commonly administered treatments, including convalescent plasma, remdesivir, and high-dose glucocorticoids. These have demonstrated modest benefits in a small subset of hospitalized patients, with only dexamethasone showing demonstrable efficacy in reducing mortality and length of hospitalization. At this time, no SARS-CoV-2-specific antiviral drugs are available, although several vaccines have been approved for use in recent months. In this review, we will evaluate the efficacy of preclinical and clinical drugs that precisely target three different, essential steps of the SARS-CoV-2 replication cycle: the spike protein during entry, main protease (MPro) during proteolytic activation, and RNA-dependent RNA polymerase (RdRp) during transcription. We will assess the advantages and limitations of drugs that precisely target evolutionarily well-conserved domains, which are less likely to mutate, and therefore less likely to escape the effects of these drugs. We propose that a multi-drug cocktail targeting precise proteins, critical to the viral replication cycle, such as spike protein, MPro, and RdRp, will be the most effective strategy of inhibiting SARS-CoV-2 replication and limiting its spread in the general population.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/farmacología , COVID-19/prevención & control , COVID-19/terapia , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Proteasas 3C de Coronavirus/metabolismo , Humanos , Inmunización Pasiva , ARN Polimerasa Dependiente del ARN/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Sueroterapia para COVID-19
17.
J Biol Chem ; 294(48): 18488-18503, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31653695

RESUMEN

tau is a microtubule (MT)-associated protein that promotes tubulin assembly and stabilizes MTs by binding longitudinally along the MT surface. tau can aberrantly aggregate into pathological inclusions that define Alzheimer's disease, frontotemporal dementias, and other tauopathies. A spectrum of missense mutations in the tau-encoding gene microtubule-associated protein tau (MAPT) can cause frontotemporal dementias. tau aggregation is postulated to spread by a prion-like mechanism. Using a cell-based inclusion seeding assay, we recently reported that only a few tau variants are intrinsically prone to this type of aggregation. Here, we extended these studies to additional tau mutants and investigated their MT binding properties in mammalian cell-based assays. A limited number of tau variants exhibited modest aggregation propensity in vivo, but most tau mutants did not aggregate. Reduced MT binding appeared to be the most common dysfunction for the majority of tau variants due to missense mutations, implying that MT-targeting therapies could potentially be effective in the management of tauopathies.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Microtúbulos/metabolismo , Proteínas tau/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Células HEK293 , Humanos , Mutación Missense , Agregado de Proteínas , Agregación Patológica de Proteínas , Unión Proteica , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
18.
J Biol Chem ; 293(49): 18914-18932, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30327435

RESUMEN

α-Synuclein (αsyn) aggregates into toxic fibrils in multiple neurodegenerative diseases where these fibrils form characteristic pathological inclusions such as Lewy bodies (LBs). The mechanisms initiating αsyn aggregation into fibrils are unclear, but ubiquitous post-translational modifications of αsyn present in LBs may play a role. Specific C-terminally (C)-truncated forms of αsyn are present within human pathological inclusions and form under physiological conditions likely in lysosome-associated pathways, but the roles for these C-truncated forms of αsyn in inclusion formation and disease are not well understood. Herein, we characterized the in vitro aggregation properties, amyloid fibril structures, and ability to induce full-length (FL) αsyn aggregation through prion-like mechanisms for eight of the most common physiological C-truncated forms of αsyn (1-115, 1-119, 1-122, 1-124, 1-125, 1-129, 1-133, and 1-135). In vitro, C-truncated αsyn aggregated more readily than FL αsyn and formed fibrils with unique morphologies. The presence of C-truncated αsyn potentiated aggregation of FL αsyn in vitro through co-polymerization. Specific C-truncated forms of αsyn in cells also exacerbated seeded aggregation of αsyn. Furthermore, in primary neuronal cultures, co-polymers of C-truncated and FL αsyn were potent prion-like seeds, but polymers composed solely of the C-truncated protein were not. These experiments indicated that specific physiological C-truncated forms of αsyn have distinct aggregation properties, including the ability to modulate the prion-like aggregation and seeding activity of FL αsyn. Proteolytic formation of these C-truncated species may have an important role in both the initiation of αsyn pathological inclusions and further progression of disease with strain-like properties.


Asunto(s)
Amiloide/metabolismo , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Fragmentos de Péptidos/inmunología , Multimerización de Proteína , Proteolisis , alfa-Sinucleína/inmunología
19.
J Biol Chem ; 293(7): 2408-2421, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29259137

RESUMEN

The accumulation of aberrantly aggregated MAPT (microtubule-associated protein Tau) defines a spectrum of tauopathies, including Alzheimer's disease. Mutations in the MAPT gene cause frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), characterized by neuronal pathological Tau inclusions in the form of neurofibrillary tangles and Pick bodies and in some cases glial Tau pathology. Increasing evidence points to the importance of prion-like seeding as a mechanism for the pathological spread in tauopathy and other neurodegenerative diseases. Herein, using a cell culture model, we examined a multitude of genetic FTDP-17 Tau variants for their ability to be seeded by exogenous Tau fibrils. Our findings revealed stark differences between FTDP-17 Tau variants in their ability to be seeded, with variants at Pro301 and Ser320 showing robust aggregation with seeding. Similarly, we elucidated the importance of certain Tau protein regions and unique residues, including the role of Pro301 in inhibiting Tau aggregation. We also revealed potential barriers in cross-seeding between three-repeat and four-repeat Tau isoforms. Overall, these differences alluded to potential mechanistic differences between wildtype and FTDP-17 Tau variants, as well as different Tau isoforms, in influencing Tau aggregation. Furthermore, by combining two FTDP-17 Tau variants (either P301L or P301S with S320F), we generated aggressive models of tauopathy that do not require exogenous seeding. These models will allow for rapid screening of potential therapeutics to alleviate Tau aggregation without the need for exogenous Tau fibrils. Together, these studies provide novel insights in the molecular determinants that modulate Tau aggregation.


Asunto(s)
Tauopatías/metabolismo , Proteínas tau/metabolismo , Secuencias de Aminoácidos , Humanos , Ovillos Neurofibrilares/química , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/metabolismo , Priones/química , Priones/genética , Priones/metabolismo , Agregado de Proteínas , Tauopatías/genética , Proteínas tau/química , Proteínas tau/genética
20.
Lab Invest ; 99(7): 912-928, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30742061

RESUMEN

In multiple neurodegenerative diseases, including Alzheimer's disease (AD), a prominent pathological feature is the aberrant aggregation and inclusion formation of the microtubule-associated protein tau. Because of the pathological association, these disorders are often referred to as tauopathies. Mutations in the MAPT gene that encodes tau can cause frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), providing the clearest evidence that tauopathy plays a causal role in neurodegeneration. However, large gaps in our knowledge remain regarding how various FTDP-17-linked tau mutations promote tau aggregation and neurodegeneration, and, more generally, how the tauopathy is linked to neurodegeneration. Herein, we review what is known about how FTDP-17-linked pathogenic MAPT mutations cause disease, with a major focus on the prion-like properties of wild-type and mutant tau proteins. The hypothesized mechanisms by which mutations in the MAPT gene promote tauopathy are quite varied and may not provide definitive insights into how tauopathy arises in the absence of mutation. Further, differences in the ability of tau and mutant tau proteins to support prion-like propagation in various model systems raise questions about the generalizability of this mechanism in various tauopathies. Notably, understanding the mechanisms of tauopathy induction and spread and tau-induced neurodegeneration has important implications for tau-targeting therapeutics.


Asunto(s)
Agregación Patológica de Proteínas , Tauopatías/genética , Proteínas tau/genética , Animales , Humanos , Microtúbulos/metabolismo , Mutación , Trastornos Parkinsonianos/genética , Procesamiento Proteico-Postraduccional , Empalme de Proteína , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA