Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(40): 9911-9916, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224456

RESUMEN

Even though high-quality X- and gamma rays with photon energy below mega-electron volt (MeV) are available from large-scale X-ray free electron lasers and synchrotron radiation facilities, it remains a great challenge to generate bright gamma rays over 10 MeV. Recently, gamma rays with energies up to the MeV level were observed in Compton scattering experiments based on laser wakefield accelerators, but the yield efficiency was as low as [Formula: see text], owing to low charge of the electron beam. Here, we propose a scheme to efficiently generate gamma rays of hundreds of MeV from submicrometer wires irradiated by petawatt lasers, where electron accelerating and wiggling are achieved simultaneously. The wiggling is caused by the quasistatic electric and magnetic fields induced around the wire surface, and these are so high that even quantum electrodynamics (QED) effects become significant for gamma-ray generation, although the driving lasers are only at the petawatt level. Our full 3D simulations show that directional, ultrabright gamma rays are generated, containing [Formula: see text] photons between 5 and 500 MeV within a 10-fs duration. The brilliance, up to [Formula: see text] photons [Formula: see text] per 0.1% bandwidth at an average photon energy of 20 MeV, is second only to X-ray free electron lasers, while the photon energy is 3 orders of magnitude higher than the latter. In addition, the gamma ray yield efficiency approaches 10%-that is, 5 orders of magnitude higher than the Compton scattering based on laser wakefield accelerators. Such high-energy, ultrabright, femtosecond-duration gamma rays may find applications in nuclear photonics, radiotherapy, and laboratory astrophysics.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(2 Pt 2): 026411, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16196722

RESUMEN

The acceleration of MeV protons by high-intensity laser interaction with foil targets is studied using a recently developed plasma simulation technique. Based on a hierarchical N-body tree algorithm, this method provides a natural means of treating three-dimensional, collisional transport effects hitherto neglected in conventional explicit particle-in-cell simulations. For targets with finite resistivity, hot electron transport is strongly inhibited, even at temperatures in the MeV range. This leads to suppression of ion acceleration from the rear of the target and an enhancement in energies and numbers of protons originating from the front.

3.
Philos Trans A Math Phys Eng Sci ; 363(1833): 1855-65, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16099753

RESUMEN

The UNICORE (UNiform Interface to COmputing REsources) software provides a Grid infrastructure together with a computing portal for engineers and scientists to access supercomputer centres from anywhere on the Internet. While UNICORE is primarily designed for the submission and control of batch jobs, it is also feasible to establish an on-line connection between an application and the UNICORE user-client. This opens up the possibility of performing on-line visualization and computational steering of applications under UNICORE control while maintaining the security provided by this system. This contribution describes the design of a steering extension to UNICORE based on the steering toolkit VISIT (VISualization Interface Toolkit). VISIT is a lightweight library that supports bidirectional data exchange between visualizations and parallel applications. As an example application, a parallel simulation of a laser-plasma interaction that can be steered by an AVS/Express application is presented.


Asunto(s)
Simulación por Computador , Informática/métodos , Internet , Cómputos Matemáticos , Modelos Teóricos , Ciencia/métodos , Programas Informáticos , Interfaz Usuario-Computador , Gráficos por Computador , Proyectos de Investigación , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA