Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 32(3): 722-733, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38311852

RESUMEN

Oncolytic viruses are a promising treatment for patients with high-grade gliomas, but neutralizing antibodies can limit their efficacy in patients with prior virus exposure or upon repeated virus injections. Data from a previous clinical trial using the oncolytic adenovirus Delta-24-RGD showed that generation of anti-viral neutralizing antibodies may affect the long-term survival of glioma patients. Past studies have examined the effects of neutralizing antibodies during systemic virus injections, but largely overlooked their impact during local virus injections into the brain. We found that immunoglobulins colocalized with viral proteins upon local oncolytic virotherapy of brain tumors, warranting a strategy to prevent virus neutralization and maximize oncolysis. Thus, we generated a chimeric virus, Delta-24-RGD-H43m, by replacing the capsid protein HVRs from the serotype 5-based Delta-24-RGD with those from the rare serotype 43. Delta-24-RGD-H43m evaded neutralizing anti-Ad5 antibodies and conferred a higher rate of long-term survival than Delta-24-RGD in glioma-bearing mice. Importantly, Delta-24-RGD-H43m activity was significantly more resistant to neutralizing antibodies present in sera of glioma patients treated with Delta-24-RGD during a phase 1 clinical trial. These findings provide a framework for a novel treatment of glioma patients that have developed immunity against Delta-24-RGD.


Asunto(s)
Neoplasias Encefálicas , Glioma , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Animales , Ratones , Adenoviridae/genética , Anticuerpos Neutralizantes , Glioma/terapia , Glioma/patología , Neoplasias Encefálicas/patología , Virus Oncolíticos/genética , Anticuerpos Antivirales , Oligopéptidos/uso terapéutico
2.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256021

RESUMEN

Currently, there is a lack of effective therapies for the majority of glioblastomas (GBMs), the most common and malignant primary brain tumor. While immunotherapies have shown promise in treating various types of cancers, they have had limited success in improving the overall survival of GBM patients. Therefore, advancing GBM treatment requires a deeper understanding of the molecular and cellular mechanisms that cause resistance to immunotherapy. Further insights into the innate immune response are crucial for developing more potent treatments for brain tumors. Our review provides a brief overview of innate immunity. In addition, we provide a discussion of current therapies aimed at boosting the innate immunity in gliomas. These approaches encompass strategies to activate Toll-like receptors, induce stress responses, enhance the innate immune response, leverage interferon type-I therapy, therapeutic antibodies, immune checkpoint antibodies, natural killer (NK) cells, and oncolytic virotherapy, and manipulate the microbiome. Both preclinical and clinical studies indicate that a better understanding of the mechanisms governing the innate immune response in GBM could enhance immunotherapy and reinforce the effects of chemotherapy and radiotherapy. Consequently, a more comprehensive understanding of the innate immune response against cancer should lead to better prognoses and increased overall survival for GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioma/terapia , Inmunoterapia , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Inmunidad Innata
3.
Mol Oncol ; 18(4): 781-784, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561242

RESUMEN

Oncolytic viruses (OVs) are biological therapeutic agents that selectively destroy cancer cells while sparing normal healthy cells. Besides direct oncolysis, OV infection induces a proinflammatory shift in the tumor microenvironment and the release of tumor-associated antigens (TAAs) that might induce an anti-tumor immunity. Due to their immunostimulatory effect, OVs have been explored for cancer vaccination against specific TAAs. However, this approach usually requires genetic modification of the virus and the production of a new viral vector for each target, which is difficult to implement for low prevalent antigens. In a recent study, Chiaro et al. presented an elegant proof of concept on how to implement the PeptiCRAd vaccination platform to overcome this limitation for the treatment of mesothelioma. Authors showed the feasibility of identifying immunogenic TAAs in human mesothelioma and using them to coat oncolytic adenovirus particles. The result was a customized virus-based cancer vaccine that circumvents time and resource-consuming steps incurred from genetically engineering viruses. Although some questions remain to be addressed, this interesting approach suggests novel strategies for personalized cancer medicine using oncolytic virotherapy.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Adenoviridae/genética , Matrimonio , Virus Oncolíticos/genética , Mesotelioma/terapia , Antígenos de Neoplasias , Microambiente Tumoral
4.
Cancer Res Commun ; 3(6): 1118-1131, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379361

RESUMEN

Cancer cell heterogeneity and immunosuppressive tumor microenvironment (TME) pose a challenge in treating solid tumors with adoptive cell therapies targeting limited tumor-associated antigens (TAA), such as chimeric antigen receptor T-cell therapy. We hypothesize that oncolytic adenovirus Delta-24-RGDOX activates the TME and promote antigen spread to potentiate the abscopal effect of adoptive TAA-targeting T cells in localized intratumoral treatment. Herein, we used C57BL/6 mouse models with disseminated tumors derived from B16 melanoma cell lines to assess therapeutic effects and antitumor immunity. gp100-specific pmel-1 or ovalbumin (OVA)-specific OT-I T cells were injected into the first subcutaneous tumor, followed by three injections of Delta-24-RGDOX. We found TAA-targeting T cells injected into one subcutaneous tumor showed tumor tropism. Delta-24-RGDOX sustained the systemic tumor regression mediated by the T cells, leading to improved survival rate. Further analysis revealed that, in mice with disseminated B16-OVA tumors, Delta-24-RGDOX increased CD8+ leukocyte density within treated and untreated tumors. Importantly, Delta-24-RGDOX significantly reduced the immunosuppression of endogenous OVA-specific CTLs while increasing that of CD8+ leukocytes and, to a lesser extent, adoptive pmel-1 T cells. Consequently, Delta-24-RGDOX drastically increased the density of the OVA-specific CTLs in both tumors, and the combination synergistically enhanced the effect. Consistently, the splenocytes from the combination group showed a significantly stronger response against other TAAs (OVA and TRP2) than gp100, resulted in higher activity against tumor cells. Therefore, our data demonstrate that, as an adjuvant therapy followed TAA-targeting T cells in localized treatment, Delta-24-RGDOX activates TME and promotes antigen spread, leading to efficacious systemic antitumor immunity to overcome tumor relapse. Significance: Adjuvant therapy with oncolytic viruses promotes antigen spread to potentiate localized intratumoral adoptive T-cell therapy with limited TAA targets, leading to sustainable systemic antitumor immunity to overcome tumor relapse.


Asunto(s)
Infecciones por Adenoviridae , Adenoviridae , Ratones , Animales , Adenoviridae/genética , Línea Celular Tumoral , Ratones Endogámicos C57BL , Recurrencia Local de Neoplasia , Linfocitos T Citotóxicos , Antígenos de Neoplasias , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA