Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2317680121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635626

RESUMEN

The endosomal sorting complex required for transport (ESCRT) machinery constitutes multisubunit protein complexes that play an essential role in membrane remodeling and trafficking. ESCRTs regulate a wide array of cellular processes, including cytokinetic abscission, cargo sorting into multivesicular bodies (MVBs), membrane repair, and autophagy. Given the versatile functionality of ESCRTs, and the intricate organizational structure of the ESCRT machinery, the targeted modulation of distinct ESCRT complexes is considerably challenging. This study presents a pseudonatural product targeting IST1-CHMP1B within the ESCRT-III complexes. The compound specifically disrupts the interaction between IST1 and CHMP1B, thereby inhibiting the formation of IST1-CHMP1B copolymers essential for normal-topology membrane scission events. While the compound has no impact on cytokinesis, MVB sorting, or biogenesis of extracellular vesicles, it rapidly inhibits transferrin receptor recycling in cells, resulting in the accumulation of transferrin in stalled sorting endosomes. Stalled endosomes become decorated by lipidated LC3, suggesting a link between noncanonical LC3 lipidation and inhibition of the IST1-CHMP1B complex.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas , Endosomas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Transporte de Proteínas , Cuerpos Multivesiculares/metabolismo
2.
Neurogenetics ; 25(2): 103-117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383918

RESUMEN

Epilepsy is a complex genetic disorder that affects about 2% of the global population. Although the frequency and severity of epileptic seizures can be reduced by a range of pharmacological interventions, there are no disease-modifying treatments for epilepsy. The development of new and more effective drugs is hindered by a lack of suitable animal models. Available rodent models may not recapitulate all key aspects of the disease. Spontaneous epileptic convulsions were observed in few Göttingen Minipigs (GMPs), which may provide a valuable alternative animal model for the characterisation of epilepsy-type diseases and for testing new treatments. We have characterised affected GMPs at the genome level and have taken advantage of primary fibroblast cultures to validate the functional impact of fixed genetic variants on the transcriptome level. We found numerous genes connected to calcium metabolism that have not been associated with epilepsy before, such as ADORA2B, CAMK1D, ITPKB, MCOLN2, MYLK, NFATC3, PDGFD, and PHKB. Our results have identified two transcription factor genes, EGR3 and HOXB6, as potential key regulators of CACNA1H, which was previously linked to epilepsy-type disorders in humans. Our findings provide the first set of conclusive results to support the use of affected subsets of GMPs as an alternative and more reliable model system to study human epilepsy. Further neurological and pharmacological validation of the suitability of GMPs as an epilepsy model is therefore warranted.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia , Fenotipo , Porcinos Enanos , Animales , Porcinos , Porcinos Enanos/genética , Epilepsia/genética , Humanos , Convulsiones/genética , Genómica/métodos , Transcriptoma , Fibroblastos/metabolismo
3.
FASEB J ; 37(1): e22700, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515677

RESUMEN

Chicken amyloid arthropathy is a debilitating disease with a major impact on animal welfare. Since the disease is triggered by bacterial infection, preventative treatment also contributes to the widespread overuse of antibiotics. Bacterial infection initiates an acute phase response including increased serum amyloid A (SAA) production by the liver. SAA accumulates at sites of infection and in particular in large joints of affected birds. Interestingly, white egg-laying chickens (WL) are resistant to the disease whilst brown egg-laying chickens (BL) are most affected. Disease susceptibility has an immunological basis but the possible contribution of underlying genetic risk factors is not understood. Using a whole genome sequencing approach, we discovered a novel variant in the SAA gene in WL, which is predicted to result in an arginine to serine substitution at position 90 (SAA.R90S). Surprisingly, when overexpressed in chicken hepatocellular carcinoma cells, SAA.R90S was expressed at a higher rate and secreted to a greater degree than the wild-type SAA protein. Moreover, RNASeq analysis showed that the R90S mutant exerted a differential effect on the expression of core transcription factors linked to cell fate determination and cell differentiation. Comparative analysis of gene expression in murine CD4 T-cells stimulated with IL-6/SAA, suggests that SAA.R90S might block an induced cell fate change toward pro-inflammatory T helper 17 cells, which are required for immunological protection against pathogenic bacteria during an acute phase response. Our results provide first mechanistic insights into the genetic resistance of WL to amyloid arthropathy and could be applied to commercial layer breeding programs to improve animal welfare and reduce the negative effects of the overuse of antibiotics.


Asunto(s)
Amiloidosis , Osteoartritis , Enfermedades de las Aves de Corral , Animales , Ratones , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Pollos/metabolismo , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/metabolismo , Reacción de Fase Aguda/complicaciones , Amiloidosis/genética , Mutación , Antibacterianos/farmacología
4.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396791

RESUMEN

Increasing evidence suggests that the calcium-binding and proinflammatory protein S100A9 is an important player in neuroinflammation-mediated Alzheimer's disease (AD). The amyloid co-aggregation of S100A9 with amyloid-ß (Aß) is an important hallmark of this pathology. Apolipoprotein E (ApoE) is also known to be one of the important genetic risk factors of AD. ApoE primarily exists in three isoforms, ApoE2 (Cys112/Cys158), ApoE3 (Cys112/Arg158), and ApoE4 (Arg112/Arg158). Even though the difference lies in just two amino acid residues, ApoE isoforms produce differential effects on the neuroinflammation and activation of the microglial state in AD. Here, we aim to understand the effect of the ApoE isoforms on the amyloid aggregation of S100A9. We found that both ApoE3 and ApoE4 suppress the aggregation of S100A9 in a concentration-dependent manner, even at sub-stoichiometric ratios compared to S100A9. These interactions lead to a reduction in the quantity and length of S100A9 fibrils. The inhibitory effect is more pronounced if ApoE isoforms are added in the lipid-free state versus lipidated ApoE. We found that, upon prolonged incubation, S100A9 and ApoE form low molecular weight complexes with stochiometric ratios of 1:1 and 2:1, which remain stable under SDS-gel conditions. These complexes self-assemble also under the native conditions; however, their interactions are transient, as revealed by glutaraldehyde cross-linking experiments and molecular dynamics (MD) simulation. MD simulation demonstrated that the lipid-binding C-terminal domain of ApoE and the second EF-hand calcium-binding motif of S100A9 are involved in these interactions. We found that amyloids of S100A9 are cytotoxic to neuroblastoma cells, and the presence of either ApoE isoforms does not change the level of their cytotoxicity. A significant inhibitory effect produced by both ApoE isoforms on S100A9 amyloid aggregation can modulate the amyloid-neuroinflammatory cascade in AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Apolipoproteínas E , Calgranulina B , Agregado de Proteínas , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E3 , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Enfermedades Neuroinflamatorias , Isoformas de Proteínas/metabolismo , Calgranulina B/metabolismo
5.
J Transl Med ; 21(1): 169, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869333

RESUMEN

BACKGROUND: Chemotherapy (CT) is central to the treatment of triple negative breast cancer (TNBC), but drug toxicity and resistance place strong restrictions on treatment regimes. Fasting sensitizes cancer cells to a range of chemotherapeutic agents and also ameliorates CT-associated adverse effects. However, the molecular mechanism(s) by which fasting, or short-term starvation (STS), improves the efficacy of CT is poorly characterized. METHODS: The differential responses of breast cancer or near normal cell lines to combined STS and CT were assessed by cellular viability and integrity assays (Hoechst and PI staining, MTT or H2DCFDA staining, immunofluorescence), metabolic profiling (Seahorse analysis, metabolomics), gene expression (quantitative real-time PCR) and iRNA-mediated silencing. The clinical significance of the in vitro data was evaluated by bioinformatical integration of transcriptomic data from patient data bases: The Cancer Genome Atlas (TCGA), European Genome-phenome Archive (EGA), Gene Expression Omnibus (GEO) and a TNBC cohort. We further examined the translatability of our findings in vivo by establishing a murine syngeneic orthotopic mammary tumor-bearing model. RESULTS: We provide mechanistic insights into how preconditioning with STS enhances the susceptibility of breast cancer cells to CT. We showed that combined STS and CT enhanced cell death and increased reactive oxygen species (ROS) levels, in association with higher levels of DNA damage and decreased mRNA levels for the NRF2 targets genes NQO1 and TXNRD1 in TNBC cells compared to near normal cells. ROS enhancement was associated with compromised mitochondrial respiration and changes in the metabolic profile, which have a significant clinical prognostic and predictive value. Furthermore, we validate the safety and efficacy of combined periodic hypocaloric diet and CT in a TNBC mouse model. CONCLUSIONS: Our in vitro, in vivo and clinical findings provide a robust rationale for clinical trials on the therapeutic benefit of short-term caloric restriction as an adjuvant to CT in triple breast cancer treatment.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Dieta Reductora , Especies Reactivas de Oxígeno , Obesidad
6.
Br J Cancer ; 120(2): 207-217, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30518816

RESUMEN

BACKGROUND: Advanced cancer causes necrosis and releases damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs activate neutrophils, including generation of neutrophil extracellular traps (NETs), which are injurious, thrombogenic, and implicated in metastasis. We hypothesised that extracellular mitochondrial DNA (mtDNA) in ascites from patients with epithelial ovarian cancer (EOC) would correlate with worse outcomes. METHODS: Banked ascites supernatants from patients with newly diagnosed advanced EOC were analysed for mtDNA, neutrophil elastase, and activation of healthy donor neutrophils and platelets. TCGA was mined for expression of SELP and ELANE. RESULTS: The highest quartile of ascites mtDNA correlated with reduced progression-free survival (PFS) and a higher likelihood of disease progression within 12-months following primary surgery (n = 68, log-rank, p = 0.0178). NETs were detected in resected tumours. Ascites supernatants chemoattracted neutrophils, induced NETs, and activated platelets. Ascites exposure rendered neutrophils suppressive, based on abrogation of ex vivo stimulated T cell proliferation. Increased SELP mRNA expression correlated with worse overall survival (n = 302, Cox model, p = 0.02). CONCLUSION: In this single-centre retrospective analysis, ascites mtDNA correlated with worse PFS in advanced EOC. Mitochondrial and other DAMPs in ascites may activate neutrophil and platelet responses that facilitate metastasis and obstruct anti-tumour immunity. These pathways are potential prognostic markers and therapeutic targets.


Asunto(s)
Alarminas/genética , Carcinoma Epitelial de Ovario/genética , ADN Mitocondrial/genética , Trampas Extracelulares/genética , Anciano , Ascitis/genética , Ascitis/patología , Plaquetas/metabolismo , Carcinoma Epitelial de Ovario/patología , Trampas Extracelulares/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Elastasa de Leucocito/genética , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neutrófilos/metabolismo , Neutrófilos/patología , Supervivencia sin Progresión , Microambiente Tumoral/genética
7.
Acta Neuropathol ; 138(1): 85-101, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30863976

RESUMEN

Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Disease pathogenesis is linked to destabilization, disorder and aggregation of the SOD1 protein. However, the non-genetic factors that promote disorder and the subsequent aggregation of SOD1 have not been studied. Mainly located to the reducing cytosol, mature SOD1 contains an oxidized disulfide bond that is important for its stability. Since O2 is required for formation of the bond, we reasoned that low O2 tension might be a risk factor for the pathological changes associated with ALS development. By combining biochemical approaches in an extensive range of genetically distinct patient-derived cell lines, we show that the disulfide bond is an Achilles heel of the SOD1 protein. Culture of patient-derived fibroblasts, astrocytes, and induced pluripotent stem cell-derived mixed motor neuron and astrocyte cultures (MNACs) under low O2 tensions caused reductive bond cleavage and increases in disordered SOD1. The effects were greatest in cells derived from patients carrying ALS-linked mutations in SOD1. However, significant increases also occurred in wild-type SOD1 in cultures derived from non-disease controls, and patients carrying mutations in other common ALS-linked genes. Compared to fibroblasts, MNACs showed far greater increases in SOD1 disorder and even aggregation of mutant SOD1s, in line with the vulnerability of the motor system to SOD1-mediated neurotoxicity. Our results show for the first time that O2 tension is a principal determinant of SOD1 stability in human patient-derived cells. Furthermore, we provide a mechanism by which non-genetic risk factors for ALS, such as aging and other conditions causing reduced vascular perfusion, could promote disease initiation and progression.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Fibroblastos/patología , Neuronas Motoras/patología , Oxígeno/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Fibroblastos/metabolismo , Humanos , Mutación/genética , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
8.
J Neuroinflammation ; 15(1): 80, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29544502

RESUMEN

BACKGROUND: Flaviviruses are a group of diverse and emerging arboviruses and an immense global health problem. A number of flaviviruses are neurotropic, causing severe encephalitis and even death. Type I interferons (IFNs) are the first line of defense of the innate immune system against flavivirus infection. IFNs elicit the concerted action of numerous interferon-stimulated genes (ISGs) to restrict both virus infection and replication. Viperin (virus-inhibitory protein, endoplasmic reticulum-associated, IFN-inducible) is an ISG with broad-spectrum antiviral activity against multiple flaviviruses in vitro. Its activity in vivo restricts neurotropic infections to specific regions of the central nervous system (CNS). However, the cell types in which viperin activity is required are unknown. Here we have examined both the regional and cell-type specificity of viperin in the defense against infection by several model neurotropic flaviviruses. METHODS: Viral burden and IFN induction were analyzed in vivo in wild-type and viperin-/- mice infected with Langat virus (LGTV). The effects of IFN pretreatment were tested in vitro in primary neural cultures from different brain regions in response to infection with tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Zika virus (ZIKV). RESULTS: Viperin activity restricted nonlethal LGTV infection in the spleen and the olfactory bulb following infection via a peripheral route. Viperin activity was also necessary to restrict LGTV replication in the olfactory bulb and the cerebrum following CNS infection, but not in the cerebellum. In vitro, viperin could restrict TBEV replication in primary cortical neurons, but not in the cerebellar granule cell neurons. Interferon-induced viperin was also very important in primary cortical neurons to control TBEV, WNV, and ZIKV. CONCLUSIONS: Our findings show that viperin restricts replication of neurotropic flaviviruses in the CNS in a region- and cell-type-specific manner. The most important sites of activity are the olfactory bulb and cerebrum. Activity within the cerebrum is required in the cortical neurons in order to restrict spread. This study exemplifies cell type and regional diversity of the IFN response within the CNS and shows the importance of a potent broad-spectrum antiviral ISG.


Asunto(s)
Antivirales/metabolismo , Infecciones por Flavivirus/patología , Flavivirus/fisiología , Regulación Viral de la Expresión Génica/fisiología , Proteínas/metabolismo , Animales , Antivirales/uso terapéutico , Astrocitos/patología , Astrocitos/virología , Células Cultivadas , Cerebro/patología , Cerebro/virología , Modelos Animales de Enfermedad , Interferón-alfa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/patología , Neuronas/virología , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/patología , Bulbo Olfatorio/virología , Proteínas/genética , Proteínas/uso terapéutico , Replicación Viral/efectos de los fármacos
9.
J Neuroinflammation ; 13(1): 277, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27776548

RESUMEN

BACKGROUND: Neurotropic flaviviruses such as tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and Zika virus (ZIKV) are causative agents of severe brain-related diseases including meningitis, encephalitis, and microcephaly. We have previously shown that local type I interferon response within the central nervous system (CNS) is involved in the protection of mice against tick-borne flavivirus infection. However, the cells responsible for mounting this protective response are not defined. METHODS: Primary astrocytes were isolated from wild-type (WT) and interferon alpha receptor knock out (IFNAR-/-) mice and infected with neurotropic flaviviruses. Viral replication and spread, IFN induction and response, and cellular viability were analyzed. Transcriptional levels in primary astrocytes treated with interferon or supernatant from virus-infected cells were analyzed by RNA sequencing and evaluated by different bioinformatics tools. RESULTS: Here, we show that astrocytes control viral replication of different TBEV strains, JEV, WNV, and ZIKV. In contrast to fibroblast, astrocytes mount a rapid interferon response and restrict viral spread. Furthermore, basal expression levels of key interferon-stimulated genes are high in astrocytes compared to mouse embryonic fibroblasts. Bioinformatic analysis of RNA-sequencing data reveals that astrocytes have established a basal antiviral state which contributes to the rapid viral recognition and upregulation of interferons. The most highly upregulated pathways in neighboring cells were linked to type I interferon response and innate immunity. The restriction in viral growth was dependent on interferon signaling, since loss of the interferon receptor, or its blockade in wild-type cells, resulted in high viral replication and virus-induced cytopathic effects. Astrocyte supernatant from TBEV-infected cells can restrict TBEV growth in astrocytes already 6 h post infection, the effect on neurons is highly reinforced, and astrocyte supernatant from 3 h post infection is already protective. CONCLUSIONS: These findings suggest that the combination of an intrinsic constitutive antiviral response and the fast induction of type I IFN production by astrocytes play an important role in self-protection of astrocytes and suppression of flavivirus replication in the CNS.


Asunto(s)
Astrocitos , Flavivirus/fisiología , Regulación Viral de la Expresión Génica/fisiología , Receptor de Interferón alfa y beta/metabolismo , Animales , Animales Recién Nacidos , Antivirales/farmacología , Astrocitos/metabolismo , Astrocitos/patología , Astrocitos/virología , Biología Computacional , Inmunoglobulina G/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/virología , Oxazinas/farmacología , ARN Mensajero/metabolismo , Receptor de Interferón alfa y beta/genética , Xantenos/farmacología
10.
Development ; 139(22): 4261-70, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23052907

RESUMEN

The roof plate is a signalling centre positioned at the dorsal midline of the central nervous system and generates dorsalising morphogenic signals along the length of the neuraxis. Within cranial ventricles, the roof plate gives rise to choroid plexus, which regulates the internal environment of the developing and adult brain and spinal cord via the secretion of cerebrospinal fluid. Using the fourth ventricle as our model, we show that the organiser properties of the roof plate are determined by its boundaries with the adjacent neuroepithelium. Through a combination of in ovo transplantation, co-culture and electroporation techniques in chick embryos between embryonic days 3 and 6, we demonstrate that organiser properties are maintained by interactions between the non-neural roof plate and the neural rhombic lip. At the molecular level, this interaction is mediated by Delta-Notch signalling and upregulation of the chick homologue of Hes1: chairy2. Gain- and loss-of-function approaches reveal that cdelta1 is both necessary and sufficient for organiser function. Our results also demonstrate that while chairy2 is specifically required for the maintenance of the organiser, its ectopic expression is not sufficient to recapitulate organiser properties. Expression of atonal1 in the rhombic lip adjacent at the roof plate boundary is acutely dependent on both boundary cell interactions and Delta-Notch signalling. Correspondingly, the roof plate boundary organiser also signals to the roof plate itself to specify the expression of early choroid plexus markers. Thus, the roof plate boundary organiser signals bi-directionally to acutely coordinate the development of adjacent neural and non-neural tissues.


Asunto(s)
Sistema Nervioso Central/embriología , Plexo Coroideo/embriología , Tubo Neural/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Sistema Nervioso Central/metabolismo , Embrión de Pollo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Prealbúmina/genética , Prealbúmina/metabolismo , Transducción de Señal
11.
Cell Rep ; 42(10): 113160, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37776851

RESUMEN

Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS) through gain-of-function effects, yet the mechanisms by which misfolded mutant SOD1 (mutSOD1) protein impairs human motor neurons (MNs) remain unclear. Here, we use induced-pluripotent-stem-cell-derived MNs coupled to metabolic stable isotope labeling and mass spectrometry to investigate proteome-wide degradation dynamics. We find several proteins, including the ALS-causal valosin-containing protein (VCP), which predominantly acts in proteasome degradation and autophagy, that degrade slower in mutSOD1 relative to isogenic control MNs. The interactome of VCP is altered in mutSOD1 MNs in vitro, while VCP selectively accumulates in the affected motor cortex of ALS-SOD1 patients. Overexpression of VCP rescues mutSOD1 toxicity in MNs in vitro and in a C. elegans model in vivo, in part due to its ability to modulate the degradation of insoluble mutSOD1. Our results demonstrate that VCP contributes to mutSOD1-dependent degeneration, link two distinct ALS-causal genes, and highlight selective protein degradation impairment in ALS pathophysiology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Animales , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Proteoma/metabolismo , Proteína que Contiene Valosina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Caenorhabditis elegans/metabolismo , Neuronas Motoras/metabolismo , Homeostasis , Mutación
12.
Nat Commun ; 14(1): 8410, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110404

RESUMEN

G protein-coupled receptors (GPCRs) mediate responses to various extracellular and intracellular cues. However, the large number of GPCR genes and their substantial functional redundancy make it challenging to systematically dissect GPCR functions in vivo. Here, we employ a CRISPR/Cas9-based approach, disrupting 1654 GPCR-encoding genes in 284 strains and mutating 152 neuropeptide-encoding genes in 38 strains in C. elegans. These two mutant libraries enable effective deorphanization of chemoreceptors, and characterization of receptors for neuropeptides in various cellular processes. Mutating a set of closely related GPCRs in a single strain permits the assignment of functions to GPCRs with functional redundancy. Our analyses identify a neuropeptide that interacts with three receptors in hypoxia-evoked locomotory responses, unveil a collection of regulators in pathogen-induced immune responses, and define receptors for the volatile food-related odorants. These results establish our GPCR and neuropeptide mutant libraries as valuable resources for the C. elegans community to expedite studies of GPCR signaling in multiple contexts.


Asunto(s)
Caenorhabditis elegans , Neuropéptidos , Animales , Caenorhabditis elegans/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Neuropéptidos/genética , Células Quimiorreceptoras , Filogenia
13.
Dev Biol ; 352(2): 341-52, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21315708

RESUMEN

The midbrain-hindbrain boundary (MHB) acts as an organiser/signalling centre to pattern tectal and cerebellar compartments. Cells in adjacent compartments must be distinct from each other for boundary formation to occur at the interface. Here we have identified the leucine-rich repeat (LRR) neuronal 1 (Lrrn1) protein as a key regulator of this process in chick. The Lrrn family is orthologous to the Drosophila tartan/capricious (trn/caps) family. Differential expression of trn/caps promotes an affinity difference and boundary formation between adjacent compartments in a number of contexts; for example, in the wing, leg and eye imaginal discs. Here we show that Lrrn1 is expressed in midbrain cells but not in anterior hindbrain cells. Lrrn1 is down-regulated in the anterior hindbrain by the organiser signalling molecule FGF8, thereby creating a differential affinity between these two compartments. Lrrn1 is required for the formation of MHB--loss of function leads to a loss of the morphological constriction and loss of Fgf8. Cells overexpressing Lrrn1 violate the boundary and result in a loss of cell restriction between midbrain and hindbrain compartments. Lrrn1 also regulates the glycosyltransferase Lunatic Fringe, a modulator of Notch signalling, maintaining its expression in midbrain cells which is instrumental in MHB boundary formation. Thus, Lrrn1 provides a link between cell affinity/compartment segregation, and cell signalling to specify boundary cell fate.


Asunto(s)
Proteínas Aviares/metabolismo , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Aviares/genética , Tipificación del Cuerpo , Agregación Celular , Embrión de Pollo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/citología , Proteínas del Tejido Nervioso/genética , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rombencéfalo/citología , Transducción de Señal , Transfección
14.
Protein Sci ; 31(8): e4378, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35900025

RESUMEN

Molecular chaperones are essential to maintain proteostasis. While the functions of intracellular molecular chaperones that oversee protein synthesis, folding and aggregation, are established, those specialized to work in the extracellular environment are less understood. Extracellular proteins reside in a considerably more oxidizing milieu than cytoplasmic proteins and are stabilized by abundant disulfide bonds. Hence, extracellular proteins are potentially destabilized and sensitive to aggregation under reducing conditions. We combine biochemical and mass spectrometry experiments and elucidate that the molecular chaperone functions of the extracellular protein domain Bri2 BRICHOS only appear under reducing conditions, through the assembly of monomers into large polydisperse oligomers by an intra- to intermolecular disulfide bond relay mechanism. Chaperone-active assemblies of the Bri2 BRICHOS domain are efficiently generated by physiological thiol-containing compounds and proteins, and appear in parallel with reduction-induced aggregation of extracellular proteins. Our results give insights into how potent chaperone activity can be generated from inactive precursors under conditions that are destabilizing to most extracellular proteins and thereby support protein stability/folding in the extracellular space. SIGNIFICANCE: Chaperones are essential to cells as they counteract toxic consequences of protein misfolding particularly under stress conditions. Our work describes a novel activation mechanism of an extracellular molecular chaperone domain, called Bri2 BRICHOS. This mechanism is based on reducing conditions that initiate small subunits to assemble into large oligomers via a disulfide relay mechanism. Activated Bri2 BRICHOS inhibits reduction-induced aggregation of extracellular proteins and could be a means to boost proteostasis in the extracellular environment upon reductive stress.


Asunto(s)
Chaperonas Moleculares , Pliegue de Proteína , Adenosina Trifosfato , Disulfuros , Chaperonas Moleculares/química , Dominios Proteicos
15.
Cells ; 11(7)2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35406813

RESUMEN

Little is known about the early pathogenic events by which mutant superoxide dismutase 1 (SOD1) causes amyotrophic lateral sclerosis (ALS). This lack of mechanistic understanding is a major barrier to the development and evaluation of efficient therapies. Although protein aggregation is known to be involved, it is not understood how mutant SOD1 causes degeneration of motoneurons (MNs). Previous research has relied heavily on the overexpression of mutant SOD1, but the clinical relevance of SOD1 overexpression models remains questionable. We used a human induced pluripotent stem cell (iPSC) model of spinal MNs and three different endogenous ALS-associated SOD1 mutations (D90Ahom, R115Ghet or A4Vhet) to investigate early cellular disturbances in MNs. Although enhanced misfolding and aggregation of SOD1 was induced by proteasome inhibition, it was not affected by activation of the stress granule pathway. Interestingly, we identified loss of mitochondrial, but not lysosomal, integrity as the earliest common pathological phenotype, which preceded elevated levels of insoluble, aggregated SOD1. A super-elongated mitochondrial morphology with impaired inner mitochondrial membrane potential was a unifying feature in mutant SOD1 iPSC-derived MNs. Impaired mitochondrial integrity was most prominent in mutant D90Ahom MNs, whereas both soluble disordered and detergent-resistant misfolded SOD1 was more prominent in R115Ghet and A4Vhet mutant lines. Taking advantage of patient-specific models of SOD1-ALS in vitro, our data suggest that mitochondrial dysfunction is one of the first crucial steps in the pathogenic cascade that leads to SOD1-ALS and also highlights the need for individualized medical approaches for SOD1-ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Superóxido Dismutasa-1 , Esclerosis Amiotrófica Lateral/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
17.
Nat Med ; 27(4): 640-646, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33859435

RESUMEN

Apart from well-defined factors in neuronal cells1, only a few reports consider that the variability of sporadic amyotrophic lateral sclerosis (ALS) progression can depend on less-defined contributions from glia2,3 and blood vessels4. In this study we use an expression-weighted cell-type enrichment method to infer cell activity in spinal cord samples from patients with sporadic ALS and mouse models of this disease. Here we report that patients with sporadic ALS present cell activity patterns consistent with two mouse models in which enrichments of vascular cell genes preceded microglial response. Notably, during the presymptomatic stage, perivascular fibroblast cells showed the strongest gene enrichments, and their marker proteins SPP1 and COL6A1 accumulated in enlarged perivascular spaces in patients with sporadic ALS. Moreover, in plasma of 574 patients with ALS from four independent cohorts, increased levels of SPP1 at disease diagnosis repeatedly predicted shorter survival with stronger effect than the established risk factors of bulbar onset or neurofilament levels in cerebrospinal fluid. We propose that the activity of the recently discovered perivascular fibroblast can predict survival of patients with ALS and provide a new conceptual framework to re-evaluate definitions of ALS etiology.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Vasos Sanguíneos/patología , Fibroblastos/patología , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Biomarcadores/metabolismo , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Marcadores Genéticos , Humanos , Ratones Transgénicos , Osteopontina/sangre , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Médula Espinal/patología , Médula Espinal/ultraestructura , Superóxido Dismutasa/genética , Transcripción Genética , Remodelación Vascular
18.
iScience ; 24(12): 103463, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34988393

RESUMEN

Amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) is a fatal neurodegenerative disorder, and continued innovation is needed for improved understanding and for developing therapeutics. We have created next-generation genomically humanized knockin mouse models, by replacing the mouse genomic region of Sod1, Tardbp (TDP-43), and Fus, with their human orthologs, preserving human protein biochemistry and splicing with exons and introns intact. We establish a new standard of large knockin allele quality control, demonstrating the utility of indirect capture for enrichment of a genomic region of interest followed by Oxford Nanopore sequencing. Extensive analysis shows that homozygous humanized animals only express human protein at endogenous levels. Characterization of humanized FUS animals showed that they are phenotypically normal throughout their lifespan. These humanized strains are vital for preclinical assessment of interventions and serve as templates for the addition of coding or non-coding human ALS/FTD mutations to dissect disease pathomechanisms, in a physiological context.

19.
Acta Neuropathol Commun ; 8(1): 161, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928301

RESUMEN

Increasing evidence suggests that propagation of the motor neuron disease amyotrophic lateral sclerosis (ALS) involves the pathogenic aggregation of disease-associated proteins that spread in a prion-like manner. We have identified two aggregate strains of human superoxide dismutase 1 (hSOD1) that arise in the CNS of transgenic mouse models of SOD1-mediated ALS. Both strains transmit template-directed aggregation and premature fatal paralysis when inoculated into the spinal cord of adult hSOD1 transgenic mice. This spread of pathogenic aggregation could be a potential target for immunotherapeutic intervention. Here we generated mouse monoclonal antibodies (mAbs) directed to exposed epitopes in hSOD1 aggregate strains and identified an aggregate selective mAb that targets the aa 143-153 C-terminal extremity of hSOD1 (αSOD1143-153). Both pre-incubation of seeds with αSOD1143-153 prior to inoculation, and weekly intraperitoneal (i.p.) administration attenuated transmission of pathogenic aggregation and prolonged the survival of seed-inoculated hSOD1G85R Tg mice. In contrast, administration of a mAb targeting aa 65-72 (αSOD165-72), which exhibits high affinity towards monomeric disordered hSOD1, had an adverse effect and aggravated seed induced premature ALS-like disease. Although the mAbs reached similar concentrations in CSF, only αSOD1143-153 was found in association with aggregated hSOD1 in spinal cord homogenates. Our results suggest that an aggregate-selective immunotherapeutic approach may suppress seeded transmission of pathogenic aggregation in ALS. However, long-term administration of αSOD1143-153 was unable to prolong the lifespan of non-inoculated hSOD1G85R Tg mice. Thus, spontaneously initiated hSOD1 aggregation in spinal motor neurons may be poorly accessible to therapeutic antibodies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Anticuerpos Monoclonales/farmacología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Superóxido Dismutasa-1/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ratones , Ratones Transgénicos
20.
Sci Rep ; 9(1): 7622, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31110238

RESUMEN

The large pore ion channel pannexin-1 (Panx1) has been reported to play a role in the cellular uptake and release of anandamide (AEA) in the hippocampus. It is not known whether this is a general mechanism or limited to the hippocampus. We have investigated this pharmacologically using T84 colon cancer cells. The cells expressed Panx1 at the mRNA level, and released ATP in a manner that could be reduced by treatment with the Panx1 inhibitors carbenoxolone and mefloquine and the Panx1 substrate SR101. However, no significant effects of these compounds upon the uptake or hydrolysis of exogenously applied AEA was seen. Uptake by T84 cells of the other main endocannabinoid 2-arachidonoylglycerol and the AEA homologue palmitoylethanolamide was similarly not affected by carbenoxolone or mefloquine. Total release of tritium from [3H]AEA-prelabelled T84 cells over 10 min was increased, rather than inhibited by carbenoxolone and mefloquine. Finally, AEA uptake by PC3 prostate cancer and SH-SY5Y neuroblastoma cells, which express functional Panx1 channels, was not inhibited by carbenoxolone. Thus, in contrast to the hippocampus, Panx1 does not appear to play a role in AEA uptake and release from the cells studied under the conditions used.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Transporte Biológico/fisiología , Neoplasias del Colon/metabolismo , Conexinas/metabolismo , Endocannabinoides/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Amidas , Carbenoxolona/metabolismo , Línea Celular Tumoral , Etanolaminas/metabolismo , Hipocampo/metabolismo , Humanos , Hidrólisis , Mefloquina/metabolismo , Neuroblastoma/metabolismo , Células PC-3 , Ácidos Palmíticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA