Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 144(Pt B): 15-26, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26597639

RESUMEN

An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Toma de Decisiones , Ecología/métodos , Bosques , Teorema de Bayes , Conservación de los Recursos Naturales/economía , Ecología/economía , Francia , Técnicas de Planificación
2.
Proc Natl Acad Sci U S A ; 105(39): 14908-12, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18815364

RESUMEN

Predicting how species distributions might shift as global climate changes is fundamental to the successful adaptation of conservation policy. An increasing number of studies have responded to this challenge by using climate envelopes, modeling the association between climate variables and species distributions. However, it is difficult to quantify how well species actually match climate. Here, we use null models to show that species-climate associations found by climate envelope methods are no better than chance for 68 of 100 European bird species. In line with predictions, we demonstrate that the species with distribution limits determined by climate have more northerly ranges. We conclude that scientific studies and climate change adaptation policies based on the indiscriminate use of climate envelope methods irrespective of species sensitivity to climate may be misleading and in need of revision.


Asunto(s)
Aclimatación , Aves/fisiología , Conservación de los Recursos Naturales , Efecto Invernadero , Animales , Aves/clasificación , Europa (Continente) , Extinción Biológica
3.
Sci Total Environ ; 660: 429-442, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30640111

RESUMEN

Globally, peatlands provide an important sink of carbon in their near natural state but potentially act as a source of gaseous and dissolved carbon emission if not in good condition. There is a pressing need to remotely identify peatland sites requiring improvement and to monitor progress following restoration. A medium resolution model was developed based on a training dataset of peatland habitat condition and environmental covariates, such as morphological features, against information derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), covering Scotland (UK). The initial, unrestricted, model provided the probability of a site being in favourable condition. Receiver operator characteristics (ROC) curves for restricted training data, limited to those located on a peat soil map, resulted in an accuracy of 0.915. The kappa statistic was 0.8151, suggesting good model fit. The derived map of predicted peatland condition at the suggested 0.56 threshold was corroborated by data from other sources, including known restoration sites, areas under known non-peatland land cover and previous vegetation survey data mapped onto inferred condition categories. The resulting locations of the areas of peatland modelled to be in favourable ecological condition were largely confined to the North and West of the country, which not only coincides with prior land use intensity but with published predictions of future retraction of the bioclimatic space for peatlands. The model is limited by a lack of spatially appropriate ground observations, and a lack of verification of peat depth at training site locations, hence future efforts to remotely assess peatland condition will require more appropriate ground-based monitoring. If appropriate ground-based observations could be collected, using remote sensing could be considered a cost-efficient means to provide data on changes in peatland habitat condition.


Asunto(s)
Monitoreo del Ambiente/métodos , Imágenes Satelitales , Humedales , Modelos Biológicos , Escocia , Suelo
4.
Sci Total Environ ; 625: 1628-1643, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29996459

RESUMEN

Climatic change in the last few decades has had a widespread impact on both natural and human systems, observable on all continents. Ecological and environmental models using climatic data often rely on gridded data, such as WorldClim. The main aim of this study was to devise and evaluate a computationally efficient approach to produce new high resolution (100m) estimates of current and future climatic variables to be used at the national and regional scale. The test area was Great Britain, where local data are available and of good quality. Present and future climate surfaces were produced. For the present, the approach involved the integration, via spatial interpolation, of local climate information and WorldClim to reduce bias. For future climate scenarios the approach involved spatially downscaling of WorldClim (1km) to a finer resolution of 100m. The main advantages of the proposed approach are: 1. finer resolution, 2. locally adapted to the study area with use of higher number of meteorological stations and improved accuracy and bias, and 3. computationally efficient while making use of the existing resources provided by WorldClim. Two applications were presented to illustrate the practical consequences of improvements obtained with this method. The first is a measure of rainfall intensity, i.e. the R-factor, widely applied in erosion and catchment-scale studies. The second is an application to species distribution modelling, involving a range of bioclimatic variables. The results highlighted the importance of considering the spatial variability and structure of the data integrated in the modelling, and using data adapted to the geographical extent of the analysis, whenever possible. The results of the applications showed the advantage of using enhanced climatic data in applications such as the estimation of soil erosion, species range shift, carbon stocks and the provision of ecosystem services.

5.
Sci Total Environ ; 628-629: 539-555, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29453183

RESUMEN

Land degradation is a serious issue especially in dry and developing countries leading to ecosystem services (ESS) degradation due to soil functions' depletion. Reliably mapping land degradation spatial distribution is therefore important for policy decisions. The main objectives of this paper were to infer land degradation through ESS assessment and compare the modelling results obtained using different sets of data. We modelled important physical processes (sediment erosion and nutrient export) and the equivalent ecosystem services (sediment and nutrient retention) to infer land degradation in an area in the Ethiopian Great Rift Valley. To model soil erosion/retention capability, and nitrogen export/retention capability, two datasets were used: a 'global' dataset derived from existing global-coverage data and a hybrid dataset where global data were integrated with data from local surveys. The results showed that ESS assessments can be used to infer land degradation and identify priority areas for interventions. The comparison between the modelling results of the two different input datasets showed that caution is necessary if only global-coverage data are used at a local scale. In remote and data-poor areas, an approach that integrates global data with targeted local sampling campaigns might be a good compromise to use ecosystem services in decision-making.

6.
Sci Total Environ ; 579: 1094-1110, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27923574

RESUMEN

Soil is very important for many land functions. To achieve sustainability it is important to understand how soils vary over space in the landscape. Remote sensing data can be instrumental in mapping and spatial modelling of soil properties, resources and their variability. The aims of this study were to compare satellite sensors (MODIS, Landsat, Sentinel-1 and Sentinel-2) with varying spatial, temporal and spectral resolutions for Digital Soil Mapping (DSM) of a set of soil properties in Scotland, evaluate the potential benefits of adding Sentinel-1 data to DSM models, select the most suited mix of sensors for DSM to map the considered set of soil properties and validate the results of topsoil (2D) and whole profile (3D) models. The results showed that the use of a mixture of sensors proved more effective to model and map soil properties than single sensors. The use of radar Sentinel-1 data proved useful for all soil properties, improving the prediction capability of models with only optical bands. The use of MODIS time series provided stronger relationships than the use of temporal snapshots. The results showed good validation statistics with a RMSE below 20% of the range for all considered soil properties. The RMSE improved from previous studies including only MODIS sensor and using a coarser prediction grid. The performance of the models was similar to previous studies at regional, national or continental scale. A mix of optical and radar data proved useful to map soil properties along the profile. The produced maps of soil properties describing both lateral and vertical variability, with associated uncertainty, are important for further modelling and management of soil resources and ecosystem services. Coupled with further data the soil properties maps could be used to assess soil functions and therefore conditions and suitability of soils for a range of purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA